АКТИВНЫЕ КОМПЛЕКТУЮЩИЕ ЭЛЕМЕНТЫ
Транзисторы
В автомобильной электронной аппаратуре в основном применяются биполярные транзисторы [24, 32]. Поэтому в настоящем разделе рассматриваются характеристики и даются рекомендации по применению транзисторов только этого типа.
Свойства транзисторов характеризуются большим числом параметров, однако-!не все из них являются определяющими при выборе того или иного типа транзистора для автомобильной электронной аппаратуры. С учетом этого при рассмотрении транзисторов различного типа их оценку следует проводить по следующим параметрам:
максимально допустимым постоянному Iк max и импульсному IК и mах
токам коллектора;
максимально допустимому постоянному току базы Iбmax;
напряжению насыщения коллектор — эмиттер Uкэ нас при заданном токе коллектора;
напряжению насыщения база — эмиттер uбэ нас при заданных токах коллектора и базы;
максимально допустимому постоянному Uкэ max и импульсному Uкэ,
и mах напряжениям коллектор — эмиттер;
максимально допустимым постоянному Uкв max и импульсному Uкв,итах напряжениям коллектор — база;
постоянному напряжению эмиттер — база U эб ;
обратному току коллектора Iкбо, который измеряется при отключенном эмиттере и подведении к переходу коллектор — база заданного напряжения обратной полярности;
обратному току эмиттера Iэбо, который измеряется при отключенном коллекторе и подведении к переходу эмиттер — база заданного напряжения обратной полярности;
обратным токам коллектор — эмиттер при отключенной базе Iкэо, при заданном сопротивлении в цепи база — эмиттер IкэR и при непосредственном соединении между собой базы и эмиттера Iкэк. Эти токи измеряются при подведении к переходу эмиттер — коллектор заданного напряжения обратной полярности;
статическому коэффициенту передачи тока в схеме с общим эмиттером h21э
, представляющему собой отношение постоянного тока коллектора к постоянному току базы при заданных постоянном напряжении коллектор — эмиттер Uкэ
и токе эмиттера Iэ;
максимально допустимой постоянной рассеиваемой мощности транзистора Ртах;
рабочему температурному диапазону.
В автомобильной электронной аппаратуре транзисторы используют в качестве элементов силовых цепей, усилительных устройств средней мощности, а также маломощных цепей управления. Соответственно этим условиям применения ниже рассматриваются транзисторы различных типов.
Транзисторы силовых цепей. К силовым цепям изделий автомобильной электронной аппаратуры относятся цепи с токами нагрузки порядка нескольких ампер. При использовании транзисторов для коммутации таких токов нагрузки необходимо снизить до минимума мощность, рассеиваемую в транзисторе, во избежание недопустимого его перегрева, а также для уменьшения размеров охлаждающего радиатора.
Для реализации этого требования необходимо обеспечить работу транзистора в режиме с минимальным падением напряжения в его переходе эмиттер — коллектор. Таким режимом является режим насыщения транзистора, поэтому при выборе типа транзистора для коммутации токов в силовых цепях, в первую очередь, следует оценивать величину Uкэнас. Следует, однако, иметь в виду, что в случае работы транзистора с высокой частотой коммутации тока, в особенности при растянутых фронтах его изменения, основным фактором, определяющим величину рассеиваемой мощности, являются потери энергии в периоды нарастания и уменьшения силы тока. Поэтому для данных условий работы транзистора наиболее важным его параметром является величина Рmах.
Выше уже отмечалось, что в бортовой сети автомобиля возможны значительные перенапряжения. Поэтому для транзисторов силовых цепей весьма важным параметром является напряжение Uкэ, итах- Чем выше коэффициент hz1э
транзистора, тем меньший ток необходимо подавать в его базу для обеспечения режима насыщения транзистора при заданном токе нагрузки (токе коллектора). Соответственно уменьшается и мощность, рассеиваемая в элементах цепи управления силовым транзистором. Это позволяет использовать в данной цепи управляющие элементы (в том числе транзисторы) меньшей мощности.
Транзисторы, предназначенные в основном для применения в силовых цепях, используют и в некоторых устройствах, где токи нагрузки не превышают десятых долей ампера, но где транзисторы должны работать в активном режиме со значительным падением напряжения в цепи эмиттер — коллектор. В этом случае лимитирующим параметром транзистора становится величина Ртах- Такой режим, в частности, характерен для выходных транзисторов стабилизаторов напряжения, а также мощных эмиттер-ных повторителей.
Автомобильная электронная аппаратура не должна выходить из строя в случае ошибочного ее включения под напряжение обратной полярности. Наиболее просто эта задача решается установкой в цепи питания аппаратуры полупроводникового диода. Однако в таком диоде имеется падение напряжения 0,8 — 1 В, что в некоторых случаях недопустимо. Кроме того, установка диода в силовой цепи приводит к значительному возрастанию мощности, рассеиваемой в аппаратуре, и, следовательно, увеличению ее нагрева.
Для обеспечения требуемой защиты элементов аппаратуры вместо диода может быть использован транзистор, переход эмиттер — коллектор которого включается в цепь питания аппаратуры. При правильно выбранных параметрах транзистора падение напряжения в его переходе эмиттер — коллектор может быть уменьшено до 0,2 — 0,3 В, а в некоторых случаях оказывается даже возможным совместить в транзисторе как основные его функции, так и функции защиты элементов цепей от напряжения обратной полярности. В обоих случаях обязательным условием является Применение транзисторов, у которых допустимое напряжение эмиттер — база не ниже напряжения источника питания аппаратуры.
В табл. 16 и 17 приведены характеристики некоторых типов мощных кремниевых транзисторов, которые могут быть рекомендованы для применения в силовых цепях, а также устройствах стабилизации напряжения и цепях усиления.
Транзисторы средней мощности. К этой группе условно могут быть отнесены транзисторы с максимальной силой постоянного тока Iкmах=0,3~0,8 А и рассеиваемой мощностью Ртах = 0,2ч-- l Вт. Их в основном применяют в качестве усилительных или коммутирующих элементов предвыходных каскадов усиления, а также в выходных цепях эмиттерных повторителей и стабилизаторов напряжения небольшой мощности. Для транзисторов данной группы наряду со значениями Iк max и Рmах наиболее важными параметрами являются напряжение насыщения коллектор — эмиттер Uкэ наг, постоянное напряжение эмиттер — база UЭБ
, стати ческий коэффициент передачи тока h21э, значения обратных токов IКБО и IЭБО.
Если источником питания транзисторов является непосредственно бортовая сеть автомобиля, то к числу наиболее важных параметров транзисторов следует отнести величины Uкэ, и max и Uкэmах, которые должны быть не ниже возможных уровней перенапряжений в бортовой сети. В остальных случаях значение Uкэmах должно быть по крайней мере не ниже напряжения источника питания транзисторов.
В табл. 18 приведены характеристики некоторых транзисторов, которые могут быть рекомендованы для применения в качестве усилительных и коммутирующих элементов устройств средней мощности.
Транзисторы малой мощности цепей управления. К данной группе условно можно отнести транзисторы с максимальной силой постоянного тока меньше 200 мА или с рассеиваемой мощностью ниже 250 мВт.
Для транзисторов этой группы наряду со значениями Iк max и Ртах наиболее важными являются следующие параметры: статический коэффициент передачи тока h21э, обратные токи Iкво
и IЭБО; постоянное напряжение эмиттер — база U ЭБ ; напряжение насыщения коллектор — эмиттер Uкэ наг и база — эмиттер Uвэ
нас-
Номенклатура выпускаемых транзисторов малой мощности весьма широка. Это позволяет, исходя из конкретных условий применения, выбрать наиболее соответствующий по параметрам тип транзистора. Вместе с тем в автомобильной электронной аппаратуре все же рекомендуется использовать ограниченную номенклатуру таких транзисторов (см. табл. 18).
16. Характеристики транзисторов силовых цепей типа n-p-t
Тип транзистора |
IК.А |
IБ.А |
Uкэ.В |
UКЭ и max В |
UЭБ, В |
Температура окружающей среды, °С |
Режим усиления |
Я при 50°С, Вт |
IКБО. МА |
IЭБО, мА |
IкэR мA |
Диаметр, мм |
Высота, мм |
||
VA |
икэ-в |
Л21Э |
|||||||||||||
КТ803А |
10/5 |
-/1 |
60/2,5 |
80 |
4,5/ — |
— 40 — +100 |
5 |
10 |
10 — 70 |
60 (30) |
50 |
5 |
29 |
25,6 |
|
КТ805А |
5/5 |
2/0,5 |
1/2,5 |
160 |
5/2,5 |
— 60 — +100 |
2 |
10 |
15 |
30(15) |
60 |
100 |
28 |
23,5 |
|
КТ805АМ |
5/5 |
2/0,5 |
1/2,5 |
160 |
5/2,5 |
— 60 — +100 |
2 |
10 |
15 |
30(15) |
60 |
100 |
5 |
10Х16*2 |
4,8 |
КТ808АМ |
10/6 |
4/0,6 |
120/ — |
250 |
4/1,4 |
— 60 — +125 |
6 |
3 |
20 |
50 |
10 |
3 |
29 |
25,6 |
|
КТ815В |
1,5/0,5 |
0,5/0,05 |
70/0,6 |
5/1,2 |
— 40 — +100 |
0,15 |
2 |
40 |
10*1 |
0,05 |
7,8х11*2 |
2,8 |
|||
КТ815Г |
1,5/0,5 |
0,5/0,05 |
100/0,6 |
5/1,2 |
— 40 — +100 |
0,15 |
2 |
30 |
10*1 |
0,05 |
7,8х11*2 |
2,8 |
|||
КТ817В |
3/3 |
1/0,3 |
60/1 |
5/1,5 |
— 60 — +125 |
2 |
2 |
20 |
25* * |
0,1 |
7.8Х11*2 |
2,8 |
|||
КТ817Г |
3/3 |
1/0,3 |
100/1 |
5/1,5 |
— 60 — +125 |
2 |
2 |
15 |
25*1 |
0,1 |
7,8x11** |
2,8 |
|||
КТ827А |
20/20 |
0,5/0,2 |
100/2,4 |
100 |
5/3 |
— 60 — +125 |
10 |
3 |
6000 |
125*1 |
2 |
3 |
39х26*2 |
10,3 |
|
КТ827Б |
20/20 |
0,5/0,2 |
80/2,4 |
80 |
5/3 |
— 60 — +125 |
10 |
3 |
6000 |
125*1 |
2 |
3 |
39х26*2 |
10,3 |
|
КТ908А |
10/10 |
5/2 |
100/1,5 |
5/2,3 |
— 60 — +125 |
10 |
2 |
8 — 60 |
50 |
25 |
300 |
. 29 |
25,6 |
*1 При температуре 25еС. *2 Размеры сечения.
Примечания: I. В числителе приведены максимально допустимые значения, в знаменателе — значения, соответствующие режиму насыщения 2. В скобках указана рассеиваемая мощность при максимальной температуре окружающей среды.
17. Характеристики транзисторов силовых цепей типа р-n-р
Тип транзистора |
IК, А |
IБ. А |
Uкэ. в |
UЭБ. В |
Температура окружающей среды, °С |
Режим усиления |
P. при 25° С, Вт |
IКБО мА |
IЭБО, мА |
IкэR мА |
Размеры сечения, мм |
Высота, мм |
||
Iк. А |
Uкэ.в |
h21Э |
||||||||||||
КТ814В |
1,5/0,5 |
0,5/0,05 |
70/0,6 |
5/1,2 |
— 40 ----- [-100 |
0,15 |
2 |
40 |
10 |
0,05 |
— |
— |
7,8X11 |
2,8 |
КТ814Г |
1,5/0,5 |
0,5/0,05 |
100/0,6 |
5/1,2 |
— 40 — 1-100 |
0,15 |
2 |
30 |
10 |
0,05 |
— |
— |
7,8x11 |
2,8 |
КТ816В |
3/3 |
1/0,3 |
60/1 |
5/1,5 |
— 60 ---- hi 25 |
2 |
2 |
20 |
25 |
0,1 |
— |
— |
7,8x11 |
2,8 |
КТ816Г |
3/3 |
1/0,3 |
100/1 |
5/1,5 |
— 60 — [-125 |
2 |
2 |
15 |
25 |
0,1 |
— |
— |
7,8x11 |
2,8 |
КТ825Д |
20/20 |
0,5/0,2 |
60/3 |
5/4 |
— 40 — [-100 |
10 |
10 |
750 |
125 |
— |
— |
— |
39,2x26 |
10,3 |
КТ825Г |
20/20 |
0,5/0,2 |
90/3 |
5/4 |
— 40 — f 100 |
10 |
10 |
750 |
125 |
— |
— |
— |
39,2x26 |
10,3 |
КТ837Д |
7,5/3 |
-/0,37 |
55/0,9 |
15/1,5 |
— 60 — 1-100 |
2 |
5 |
20 — 80 |
— |
0,15 |
0,3 |
10 |
10x16 |
4,8 |
КТ837Е |
7,5/3 |
-/0,37 |
55/0,9 |
15/1,5 |
— 60 ---- hi 00 |
2 |
5 |
50 — 150 |
— |
0,15 |
0,3 |
10 |
10x16 |
4,8 |
КТ837М |
7,5/3 |
— /0,37 |
70/2,5 |
5/1,5 |
— 60 ---- hi 00 |
2 |
5 |
20 — 80 |
— |
0,15 |
0,3 |
10 |
10x16 |
4,8 |
КТ837И |
7,5/2 |
-/0,3 |
40/0,5 |
15/1,5 |
— 60 — hi 00 |
2 |
5 |
20 — 80 |
— |
0,15 |
0,3 |
10 |
10x16 |
4,8 |
КТ837К |
7,5/2 |
— /0,3 |
40/0,5 |
15/1,5 |
— 60 — 4-100 |
2 |
5 |
50 — 150 |
— |
0,15 |
0,3 |
10 |
10х10 |
4,8 |
КТ829А |
8/- |
0,2/ — |
100/ — |
— |
— 40 — [-85 |
3 |
- 3 |
750 |
60 |
— |
2 |
1,5 |
10x16 |
4,8 |
Примечание. В числителе приведены максимально допустимые значения, в знаменателе — значения, соответствующие режиму насыщения.
18. Характеристики транзисторов средней и малой мощности для цепей управления
Тип транзистора |
IK , мА |
IБ мА |
Uкэ. в |
UЭБ. В |
Температура окружающей среды, °С |
Режим усиления |
IКБО, мкА |
IЭБО, мкА |
IкэR, мкА |
р при 25СС, мВт |
Диаметр, мм |
Высота, мм |
||
IК, мА |
UКЭ, в |
h21Э |
||||||||||||
|
|
|
|
Средней мощности типа р-n-р |
|
|
|
|
|
|
||||
КТ209Б, В, Е, И, М КТ501Б, Д, Е, И, М КТ502А-Е КТ503А-Е |
300/300 300/300 300/10 300/10 |
100/30 100/60 100/1 100/1 |
15 — 60/0,4 15 — 60/0,4 25 — 80/0,15 25 — 80/0,2 |
10 — 20/1,5 10 — 20/1,5 5/0,8 5/0,8 |
— 40 — + 100 — 60 — +125 — 40 — +100 — 50 — +85 |
30 30 10 10 |
1 1 5 5 |
40 — 240 40 — 240 40 — 240 40 — 240 |
1 1 1 |
1 1 |
|
200 350 350 350 |
5,2 4,95 5,2 5,2 |
5,3 5,3 5,2 5,2 |
|
|
|
|
Средней мощности типа n-р-n |
|
|
|
|
|
|
||||
КТ608Б КТ630А-Г КТ619А |
400/400 1000/150 100/ — |
— /80 200/150 |
60/0,4 100 — 150/0,3 250/ — |
4/1 7/1,1 5/ — |
— 40 — +85 — 50 — Ь85 — 50 — ^85 |
: 200 150 1 |
5 10 40 |
40 — 160 40 — 240 30 |
10 |
10 0,1 100 |
1 50 |
500 800 500 |
11,7 8,5 9,4 |
8 6,6 4,7 |
|
|
|
|
Малой мощности типа n-р-n |
|
|
|
|
|
|
|
|||
КТ315Б, В, Г, И КТ342А, Б КТ373А, Б, Г КТ3102А, Б, Г, Е |
100/20 50/10 50/10 100/ — |
-/2 — /1 -/1 |
20 — 60/0,4 25 — 30/0,1 30 — 60/0,1 20 — 50/ — |
6/1,1 5/0,9 5/0,9 5/- |
— 60 — [-100 — 60 — И 25 — 50 — f-85 — 40 — (-85 |
1 1 1 2 |
10 5 5 5 |
80 — 350 25 — 500 50 — 600 100— 1000 |
1 1 0,05 0,015; 0,05 |
30 30 30 10 |
1 30 30,100 0,1 |
150 250 150 250 |
7,2хЗ*3 4,95 5х2,5*3 4,95 |
5 5,3 4,5 5,3 |
|
|
|
|
Малой мощности типа р-n-р |
|
|
|
|
|
|
|
|||
КТ345Б, В КТ361Б, В, Г, К КТ3107Б, Д , КТ3107К, Л |
200/100 50/20 100/100 100/100 |
-/10 — /2 50/5 5/5 |
20/0,3 20 — 60/0,3 30 — 50/0,5 20 — 30/0,5 |
4/1,1 4/0,85 5/1 5/1 |
— 40 — (-85 — 60 ---- (-100 — 60 — Hi 25 — 60 — (-125 |
100 1 2 2 |
1 10 5 5 |
50 — 1 05 40 — 350 120 — 460 380 — 800 |
1 1 0,1 0,1 |
! 0,1 0,1 |
1 |
100*1 150*2 300 300 |
4,2x2,5* 7,2хЗ*3 4,2x5,2* 4,2x5,2* |
М 4,2 5 3 5,2 3 5,2 |
* 1 При температуре 40° С. *2 При температуре 35° С. *3.Размеры сечения.
Примечания: 1 . Значения UKэ max, UЭБ и диапазон h21Э зависят от буквенного обозначения транзистора каждого типа.
2. В числителе приведены максимально допустимые значения, в знаменателе — значения, соответствующие режиму насыщения.
Интегральные микросхемы
Отличительные особенности любой интегральной микросхемы в первую очередь определяются ее функциональным назначением. При этом микросхемы одного и того же функционального назначения имеются в номенклатуре ряда серий интегральных микросхем и отличаются одна от другой по тем или иным показателям [3]. Основными из этих показателей являются следующие: напряжение источника питания Uи. п;
рабочий диапазон температур;
входной ток IВХ;
выходной ток Iпмх;
входное напряжение Uвх;
выходное напряжение UMttK;
максимально допустимая рассеиваемая мощность Pp.-,.-max;
коэффициент усиления сигналов (для усилительных схем).
Интегральная микросхема, как правило, представляет собой функционально законченное устройство, предназначенное для решения определенной схемотехнической задачи. Обычно одна и та же задача может быть решена,в результате применения аналогичных по функциональному назначению микросхем, входящих в различные серии, а также с помощью электронной схемы, собранной из дискретных элементов. Поэтому важным фактором для оценки целесообразности использования микросхемы той или иной серии вместо электронной схемы, выполненной на базе дискретных элементов, является ее стоимость.
Номенклатура микросхем, выпускаемых промышленностью, чрезвычайно широка, в связи с чем затруднительно дать рекомендации по использованию конкретных типов интегральных микросхем в той или иной автомобильной электронной аппаратуре. Однако, исходя из опыта создания такой аппаратуры, представляется возможным оценить перспективность применения определенных серий интегральных микросхем, а также некоторых их типов.
Аналоговые микросхемы. Аналоговые микросхемы применяют для усиления уровня сигналов, их преобразования, а также при создании стабилизаторов тока и напряжения.
Для решения этих задач в основном используют интегральные микросхемы следующего функционального назначения: операционные усилители (в том числе компараторы); генераторы сигналов специальной формы (одновибраторы, автоколебательные мультивибраторы); триггеры (в том числе триггеры Шмитта); стабилизаторы напряжения.
Из числа аналоговых микросхем наиболее широко в автомобильной электронной аппаратуре применяются операционные усилители, осуществляющие усиление сигналов постоянного тока, а также выполняющие функции компараторов напряжения. Следует отметить, что, несмотря на широкую номенклатуру операционных усилителей, выпускаемых промышленностью, существуют определенные ограничения по их использованию в автомобильной электронной аппаратуре. Такими ограничениями являются необходимость обеспечения работоспособности операционного усилителя в диапазоне температур — 40 — j-85°C, а также при минимальных напряжениях бортовой сети автомобиля. В частности, для автомобилей с номинальным напряжением бортовой сети, равным 12 В, минимально допустимое напряжение составляет 10,8 В. Поэтому для обеспечения нормальной работы электронной аппаратуры данных автомобилей применяемые в ней операционные усилители должны нормально работать при напряжении источника питания 10 В (или ±5 В).
Таким требованиям удовлетворяют операционные усилители типов К153УД2 (серия 153) и К553УД2 (серия 553), работоспособность которых гарантируется при напряжении питания ±5 В и температуре окружающей среды — 45 — +85°С. Важным положительным качеством данных операционных усилителей является их низкая стоимость.
Указанные выше требования также удовлетворяют некоторые операционные усилители серии К140. При этом для усилителей типа К140УД11, К140УД14, К140УД17 и К1408УД2 (спаренный) допускается работа при минимальном напряжении питания ±5 В, а для усилителя типа К140УД12 — при минимальном напряжении ±1,5 В. Рабочий диапазон температур указанных усилителей составляет — 45 — i-850C.
При номинальном напряжении бортовой сети, равном 24 В, помимо названных типов усилителей в электронной аппаратуре могут применяться почти все операционные усилители, входящие в серию КНО, а также компараторы напряжения, входящие в серии К521 (типов К521СА1 и К521СА2) и К554 (типов К554СА1 и К554СА2).
Наряду с операционными усилителями очень перспективными для применения в автомобильной электронной аппаратуре являются токоразностные дифференциальные усилители, которые иногда называют усилителями Нортона. Эти усилители, так же как и операционные, имеют инвертирующий и неинвертирующий входы. Однако в отличие от операционного усилителя, где выходное напряжение определяется соотношением напряжений, подводимых к его входам, у токоразностного усилителя напряжение на выходе зависит от соотношения сил токов, проходящих в цепях инвертирующего и неинвертирующего входов. Промышленностью выпускается микросхема типа К1401УД1, состоящая из четырех независимо действующих токоразностных усилителей [3].
Важным положительным качеством токоразностного усилителя является возможность получения на его выходе минимального напряжения, не превышающего десятых долей вольта, в то время как у операционных усилителей этот уровень составляет не менее 1,5 — 2 В (по отношению к отрицательному полюсу источника питания).
Из выпускаемых интегральных стабилизаторов напряжения наиболее подходящими по характеристикам для применения в автомобильной электронной аппаратуре являются компенсационные стабилизаторы с регулируемым стабилизированным напряжением, выполненные в виде интегральных микросхем типа К142ЕН1А (Uвх = 9-20 В, UВЫХ = 3-12 В) и К142ЕН2А (UR,= 15н-40 В, Uвых= 12-30 В).
Следует, однако, иметь в виду, что из-за имеющихся падений напряжения в регулирующих элементах этих стабилизаторов минимальная разность напряжений Uвх — Uвых
составляет около 3 В. Данное обстоятельство ограничивает возможность применения стабилизаторов данного типа в автомобилях с номинальным напряжением бортовой сети 12 В, поскольку в этом случае при минимально допустимом ее напряжении, равном 10,8 В, окажется невозможным получить стабилизированное напряжение выше 7 — 8 В.
Цифровые микросхемы. В автомобильной электронной аппара туре преимущественно применяются цифровые микросхемы следующего функционального назначения: логические элементы типа И — НЕ, И, НЕ, ИЛИ и их комбинации; триггеры типа I-K и D; счетчики, сумматоры и регистры; дешифраторы.
Относящиеся к цифровым микросхемам элементы микропроцессорных комплектов в данном разделе не рассматриваются, поскольку они составляют особый класс программируемых устройств.
Цифровые микросхемы по сравнению с аналоговыми имеют худшую помехоустойчивость, вследствие чего для них более вероятны сбои в работе при наличии помех в цепях питания, а также полевых (электромагнитных) помех. Особенно это характерно для микросхем, принцип действия которых основан на срабатывании не от уровня входного сигнала, а от его перепада. Поэтому очень важным показателем, определяющим целесообразность- применения цифровых микросхем той или иной серии, является их помехоустойчивость. Кроме того, должна быть обеспечена работоспособность цифровых микросхем при минимально допустимых напряжениях бортовой сети автомобиля, а также в диапазоне температур окружающей среды — 40 — +70°С.
Наиболее широко представлены цифровые микросхемы самого различного функционального назначения в сериях К155 (транзисторно-транзисторная логика ТТЛ) и К.176, К561, 564 (на базе структуры КМОП). Номинальное напряжение микросхем серии К.155 составляет 5 В, в связи с чем для данной серии отсутствуют ограничения, связанные с возможным снижением напряжения бортовой сети. Модификация серии К155, выпускаемая в металло-керамических корпусах (серия КМ 155), является работоспособной в диапазоне температур — 45 — +85°С.
Помехозащищенность микросхем серии К155 равна 0,4 — 1 В. Поэтому при использовании данных микросхем в автомобильной электронной аппаратуре необходимо принимать специальные меры по защите их от воздействия полевых помех и в особенности помех в цепях питания.
Вследствие жесткого допуска на величину напряжения питания (5 В±5%) микросхемы серии К155 обязательно должны подключаться к стабилизатору напряжения с номинальным выходным напряжением 5 В. При номинальном напряжении бортовой сети 12 В и максимально допустимом ее напряжении 15 В регулирующий элемент выходной цепи стабилизатора должен быть рассчитан на падение в нем напряжения до 10 В. Соответственно этому КПД стабилизатора составит всего лишь около 30%, т. е. 70% мощности, подводимой к стабилизатору, будет расходоваться на его нагрев. Еще худшие показатели будет иметь стабилизатор при номинальном напряжении бортовой сети 24 В, чему соответствует максимальное ее напряжение 30 В. В данном случае выходной регулирующий элемент стабилизатора должен быть рассчитан на падение напряжения до 25 В, а КПД стабилизатора окажется равным примерно 15%, т. е. почти 85% мощности, подводимой к стабилизатору, будет расходоваться на его нагрев.
По сравнению с микросхемами серии К155 более высокую помехозащищенность имеют микросхемы серии К511, относящиеся к высокопороговой логике ВПЛ. Микросхемы данной серии могут работать в диапазоне температур — 45 — +85°С, и они не реагируют на помехи с уровнем до 6 В (по сравнению с уровнем 1 В у микросхем серии К155). Кроме того, микросхемы серии К511 могут работать в диапазоне напряжений питания 10,8 — 25 В.
Следовательно, при номинальном напряжении бортовой сети 24 В и минимально допустимом ее напряжении 21,6 В для питания микросхем серии К511 может быть применен стабилизатор с выходным напряжением порядка 20 — 21 В. В этом случае наибольшее падение напряжения в выходном регулирующем элементе стабилизатора (при максимально допустимом напряжении бортовой сети 30 В) составит 9 — 10 В. КПД стабилизатора для данных условий его работы будет составлять около 65 %. Таким образом, при номинальном напряжении бортовой сети 24 В применение микросхем серии К511 является предпочтительным по сравнению с микросхемами серии К155. Однако это не всегда возможно, поскольку номенклатура микросхем, входящих в серию К511, существенно уже по сравнению с серией К155.
Нижний допустимый предел напряжения питания микросхем серии К511 составляет 10,8 В, что равно минимально допустимому напряжению бортовой сети, имеющей номинальное напряжение 12 В. Поэтому применение микросхем серии К511 в электронной аппаратуре автомобилей с номинальным напряжением бортовой сети 12 В возможно только при условии подключения микросхем непосредственно к бортовой сети, т. е. без стабилизатора напряжения. В большинстве случаев такое подключение микросхем недопустимо, что ограничивает возможности их применения.
Микросхемы серии К561 работоспособны при напряжении питания 3 — 15 В и температурах — 45 — j-85°C, а их помехозащищенность (статическая) составляет 0,3 — 0,5 напряжения источника питания. Номенклатура микросхем, входящих в серию К561, несколько уже по сравнению с номенклатурой серии К155, но все же на их базе могут быть созданы многие изделия автомобильной электроники. Если же в серии К561 не оказывается микросхем с необходимым функциональным назначением, то требуемые микросхемы в ряде случаев могут быть взяты из серии 564, поскольку данная серия в основном имеет такие же показатели, что и серия К561. В этих случаях возможно также применение микросхем серии К176, поскольку для большинства микросхем, входящих в эту серию, допускается работа в диапазоне температур — 45 — 0°С. Допустимое напряжение питания микросхем серии К176 составляет 9 В±5 %, т. е. даже при минимально допустимом напряжении бортовой сети 10,8 В для их питания возможно применение простейшего стабилизатора напряжения.
Нагрузочная способность микросхем серий К176, К561, 564 ниже, чем у микросхем серий КМ155 и К511. Поэтому между выходом микросхем и их нагрузкой в ряде случаев приходится включать усиливающие элементы, например эмиттерные повторители. Микросхемы серий КМ155, К511, К561, К176 имеют аналогичную конструкцию. Они устанавливаются на платах со стороны, противоположной печатным проводникам, а шаг между выводными концами их корпуса составляет 2,5 мм. Микросхемы серии 564 устанавливают на платы со стороны печатных проводников с шагом ~между их выводными концами 1,25 мм. В силу указанных конструктивных отличий микросхем серии 564 от микросхем серий КМ155, К511, К561, К176 их по возможности, стараются не монтировать на одной и той же плате.
Перечисленными выше сериями микросхем, безусловно, не ограничивается их номенклатура, возможная для применения в автомобильной электронной аппаратуре. Так, например, при создании электронной аппаратуры, содержащей запоминающие устройства, цифроаналоговые и аналого-цифровые преобразователи, в ряде случаев приходится применять микросхемы иных серий. В этих случаях выбор тех или иных типов микросхем зависит от целевого назначения аппаратуры, особенностей ее работы и т. д.
АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
Системы автоматического управления сцеплением получили наиболее широкое распространение в 50 — 60-х годах. Их особенностью являлось применение сцеплений специальных конструкций, которые легче поддавались автоматизации по сравнению с обычными фрикционными сцеплениями.
Рис. 55. Схема системы автоматического управления сцеплением «Драйв Матик»:
а — педаль управления дроссельной заслонкой отпущена, сцепление выключено; б — педаль управления дроссельной заслонкой нажата, сцепление выключено; в — педаль управления дроссельной заслонкой нажата, сцепление включено; 1 — вакуумная сервокамера; 2 — полость сервокамеры; 3 — мембрана; 4 — шток; 5 — рычаг; 6 — трос педали сцепления; 7 — педаль привода сцепления; 8 — педаль управления дроссельной заслонкой; 9 — трос педали привода дроссельной заслонки; 10 — рукоятка переключения передач; 11 — рычаг переключения передач; 12 — датчик скорости; 13 — электронный блок; 14 — потенциометр, id — отверстие для впуска воздуха; 16 и 26 — электромагниты; 17 — шланг; 18 и 20 — элементы золотника; 19 — золотник; 21 — полость золотника; 22 и 23 — каналы; 24 — воздушный клапан; 25 — вакуумный клапан; 27 — ресивер; 28 — обратный клапан; 29 — впускной коллектор двигателя; 30 — шланг
Широкое применение получили центробежные сцепления, а также электромагнитные (фрикционные и из порошковых материалов), имеющие сравнительно простые релейные схемы управления. Недостаток автоматически действующих сцеплений — невозможность использования унифицированного силового агрегата. В конце 70-х годов за счет применения электронных систем оказалось возможным относительно простыми средствами автоматизировать работу обычного фрикционного сцепления. Следует, однако, отметить, что системы автоматизации управления сцеплением пока что носят единичный характер. В качестве примера такой системы можно указать на выпускаемую в ФРГ систему управления «Драйв Матик». Эта система обеспечивает автоматизацию управления обычным фрикционным сцеплением. Ее комплектуют только из навесных узлов, благодаря чему ее применение не связано с изменением конструкции серийных агрегатов автомобиля.
Исполнительным механизмом системы (рис. 55) является вакуумная сервокамера 1 с мембраной 3, шток 4 которой через трос 6 воздействует на педаль 7 привода сцепления, осуществляя регу лирование момента Мс. Кроме того, шток 4 через приводной рычаг 5 связан с первым подвижным элементом 18 кольцевого золотника 19, регулирующего разрежение в полости 2 вакуумной сервокамеры 1. Второй подвижный элемент 20 кольцевого золотника посредством троса 9 соединен с педалью 8 управления дроссельной заслонкой.
В элементах 18 и 20 имеются каналы 22 и 23, которые в зависимости от взаимного расположения элементов либо соединяются между собой, либо разобщаются. При совмещении этих каналов внутренняя полость 21 золотника соединяется с атмосферой, а при разобщении связь указанной полости золотника с атмосферой прерывается. Полость 21 золотника посредством шланга 17 соединяется с полостью 2 сервокамеры 1, поэтому в зависимости от взаимного расположения элементов золотника полость 2 сервокамеры или соединяется или разъединяется с атмосферой.
Соединение полости 2 сервокамеры с атмосферой может осуществляться и через клапан 24, приводимый от электромагнита 16. При включении электромагнита клапан 24 разъединяет полость сервокамеры с атмосферой (соединяемые через отверстия 15), и разрежение в этой полости определяется только действием золотника 19. Если же электромагнит 16 выключен, то независимо от действия золотника в полости 2 сервокамеры устанавливается атмосферное давление.
Клапан 25 при срабатывании электромагнита 26 соединяет полость 2 сервокамеры с ресивером 27, который с помощью шланга 30 через обратный клапан 28 связан с впускным коллектором 29 двигателя. При этом клапан 25 одновременно осуществляет отсоединение полости 2 от остальной части системы регулирования разрежением.
Электронный блок 13 управляет включением и выключением электромагнита 16 в зависимости от скорости движения автомобиля, получая входные сигналы от датчика 12 скорости автомобиля При его движении со скоростями ниже заданной выход блока (вывод K) соединен с массой, а при достижении автомобилем заданной скорости эта связь прерывается С помощью потенциометра 14 электронный блок настраивается на срабатывание при требуемой скорости. Когда водитель прикладывает усилие к рукоятке 10 рычага 11 переключения передач в выключателе S1, встроенном в эту рукоятку, контакты замыкаются на массу. В выключателе S2, расположенном в приводе переключения передач, контакты замыкаются при включении любой из передач. При нейтральном положении коробки передач контакты разомкнуты. С тросом 9 привода дроссельной заслонки связан микровыключатель S3, контакты которого замкнуты только при режиме холостого хода двигателя.
Система « Драйв Матик» действует следующим образом. При установке рычага переключения передач в нейтральное положение и отпущенной педали управления дроссельной заслонкой вследствие размыкания контактов выключателей S1 и S2 электромагниты 16 и 26 оказываются отключенными от источника питания. Вследствие этого клапан 25 отсоединяет полость 2 сервокамеры от ресивера 27, а через открытый воздушный клапан 24 полость 2 сервокамеры соединяется с атмосферой, в результате сцепление включается.
Как только водитель при неподвижном автомобиле включает какую-либо из передач, создается цепь питания электромагнитов 16 и 26 через замкнувшиеся контакты выключателя S2 и замкнутую выходную цепь электронного блока. В результате срабатывают оба электромагнита, и воздушный клапан 24 разъединяет полость 2 сервокамеры с атмосферой, а вакуумный клапан 25 соединяет ее с ресивером 27. Это обеспечивает полное выключение сцепления.
При нажатии водителем на педаль 8 управления дроссельной заслонкой размыкаются контакты микровыключателя S3, в результате чего цепь питания электромагнита 26 разрывается и вакуумный клапан 25 закрывается, разъединяя полость 2 сервокамеры и ресивер. Поскольку вследствие включения электромагнита 16 воздушный клапан 24 оказывается также закрытым, величина разрежения в полости 2 вакуумной камеры определяется только действием золотника 19, Элемент 18 золотника 19 установлен по отношению к элементу 20 так, что при отпущенной педали о и расположении штока 4 в крайнем левом положении (полное выключение сцепления) каналы 22 и 23 элементов золотника оказываются соединенными между собой. Вследствие этого полость 2 сервокамеры соединяется с атмосферой, что приводит к постепенному уменьшению в ней разрежения и, как следствие, к перемещению штока 4 слева направо. Такое перемещение штока 4 будет продолжаться до тех пор, пока поворот элемента 18 не разобщит каналы 22 и 23. В этом случае связь полости 2 сервокамеры с атмосферой прервется и дальнейшее перемещение штока 4 прекратится.
Элементы золотника располагают таким образом, что при отпущенной педали 8 шток 4 устанавливается в положении I, соответствующем началу передачи сцеплением момента.
При нажатии водителем на педаль 8 вследствие поворота элемента 20 (положение II золотника) вновь произойдет соединение каналов элементов 18 и 20. Это обусловит соединение полости 2 сервокамеры с атмосферой и дальнейшее перемещение штока в направлении включения сцепления. Такое перемещение прекратится, когда шток 4 опять установится в положение III, соответствующее разобщению каналов 22 и 23. Очевидно, что чем на больший угол была открыта дроссельная заслонка, тем дальше в направлении включения сцепления должен переместиться шток 4 для того, чтобы произошло разобщение каналов элементов. Таким образом, в системе «Драйв Матик» момент Мс регулируется в зависимости от угла а открытия дроссельной заслонки. Показатели такой системы управления были рассмотрены выше.
После того, как автомобиль разгонится до скорости, при которой срабатывает электронный блок, вследствие отключения от массы вывода K блока разрывается цепь питания электромагнита 16. Это обеспечивает открытие воздушного клапана 24, и полость 2 сервокамеры соединяется с атмосферой независимо от взаимного положения элементов золотника. Диаметр отверстия 15 выбирают из условия обеспечения плавного включения сцепления в процессе его блокировки вследствие открытия воздушного клапана.
Принудительная блокировка сцепления после разгона автомобиля до заданной скорости предотвращает повышенное изнашивание выжимного подшипника сцепления при движении автомобиля с малыми углами открытия дроссельной заслонки.
Система «Драйв Матик» обеспечивает только плавное увеличение момента Мс по мере увеличения угла открытия заслонки. Если же водитель уменьшает угол открытия дроссельной заслонки, то момент Мс не снижается и остается равным тому значению, которое было достигнуто ранее при наибольшем угле открытия заслонки. Для того чтобы уменьшить момент Мс до значения, соответствующего меньшему углу открытия дроссельной заслонки, необходимо вначале полностью отпустить педаль 8 для того, чтобы замкнулись контакты микровыключателя S3 и полость 2 сервокамеры соединилась с ресивером, а затем перевести педаль 8 в требуемое положение. Данная особенность системы управления является положительной с точки зрения уменьшения опасности работы сцепления с длительным пробуксовыванием. Однако при этом усложняется маневрирование при движении автомобиля с низкими скоростями, а также уменьшается предельный угол подъема, на котором возможно трогание автомобиля с места.
Принудительное выключение сцепления в процессе переклю чения передач независимо от частоты вращения коленчатого вала и скорости движения автомобиля обеспечивается при замыкании контактов включателя S1. В этом случае включается электромагнит 26, благодаря чему через открывшийся вакуумный клапан 25 происходит соединение полости 2 сервокамеры с ресивером и, как следствие, полное выключение сцепления.
Система «Драйв Матик» обеспечивает все требуемые режимы работы автоматического сцепления. Но для этого она помимо сервокамеры и регулирующего золотника содержит значительное количество дополнительной управляющей аппаратуры (два клапана с электромагнитным приводом, три выключателя, датчик скорости, электронный блок управления блокировкой сцепления). Следует, однако, учесть, что электронный блок по функциональному назначению представляет собой один из вариантов частотного компаратора, т. е. степень его сложности невелика и примерно соответствует сложности электронного блока управления экономайзером принудительного холостого хода, выпускаемого промышленностью для моделей автомобилей отечественного производства.
Автоматический электровакуумный привод сцепления
Электровакуумный привод сцепления (ЭПС) представляет собой универсальную систему автоматического управления стандартным фрикционным сцеплением автомобилей с двигателями, имеющими рабочий объем 0,65 — 2,5 л, которая изменяет момент трения Мс сцепления в зависимости от частоты вращения пк
коленчатого вала. Он комплектуется только из навесных узлов, не имеющих механической связи с другими агрегатами автомобиля. Благодаря этому оборудование автомобилей ЭПС не требует изменения конструкции их агрегатов.
Основными узлами ЭПС являются вакуумная сервокамера (рис. 56) и электронный блок автоматики, регулирующий силу тока в обмотке электромагнита 2 сервокамеры. Сцепление включается и выключается в результате перемещения поршня 6 (рис. 57) и связанного с ним штока 3 сервокамеры. Если, например, поршень 6 втягивается внутрь сервокамеры, то шток 3, воздействуя на рычаг 2, перемещает слева направо поршень главного гидроцилиндра 22 сервокамеры. Это вызывает перемещение поршня рабочего гидроцилиндра 19 (слева направо на рис. 57), вследствие чего шток 15, нажимая на рычаг привода сцепления, передвигает выжимной подшипник сцепления, выключая его через пяту сцепления. При движении поршня 6 в обратном направлении сцепление включается.
Слева от поршня 6 расположена полость 5, постоянно соединенная с атмосферой, а справа от поршня находится полость 9 регулируемого давления, в которой давление может меняться от атмосферного до разрежения 60 — 70 кПа. Чем выше разрежение в полости 9, тем большая разность сил действует на стенки поршня 6, в результате чего возрастает сила, стремящаяся переместить поршень внутрь сервокамеры. Под ее действием через приводные узлы сцепления сжимаются нажимные пружины, вследствие чего уменьшается прижатие нажимного диска к ведомому и соответственно уменьшается момент, передаваемый сцеплением. По мере уменьшения разрежения в полости 9 снижается сила, действующая на поршень 6. В результате этого уменьшается усилие, действующее на нажимные пружины сцепления, что приводит к ослаблению силы прижатия нажимного диска к ведомому.
При этом обеспечивается возрастание момента, передаваемого сцеплением.
Разрежение в полости 9 регулируется с помощью клапана 31, на который с одной стороны действует пружина 32, а с другой стороны — толкатель 28. В свою очередь, на толкатель действует, во-первых, усилие последовательно установленных пружин 4 и 8, которое стремится передвинуть его слева направо, и, во-вторых, сила Fэм, развиваемая электромагнитом 12, направленная навстречу усилию указанных пружин. Пружина 8 создает гораздо меньшее усилие по сравнению с пружиной 4, поэтому она полностью сжимается после втягивания поршня 6 на 20 — 25 % полного его перемещения, в пределах которого момент Мс сохраняет максимальное значение. Так как пружина 8 не влияет на характеристики сервокамеры, то при рассмотрении принципа действия ЭПС будет приниматься во внимание только действие пружины 4. Назначение пружины 8 будет указано ниже.
Рис. 56. Узлы электровакуумного привода сцепления:
а — электронный блок управления; б — сервокамера; 1 — шток; 1 — электромагнит; 3 — главный гидроцилиндр; 4 — регулируемая опора рычага; 5 — рычаг.
Электромагнит 12 в отличие от электромагнитов с втягивающимся якорем обычного типа выполнен без центрального неподвижного сердечника. В результате по мере втягивания якоря внутрь полости электромагнита развиваемое им тяговое усилие не возрастает, как у обычных электромагнитов (рис. 58, кривые 1 и 2), а уменьшается (кривые 3 — 8). Тем самым за счет регулирования силы тока в обмотке электромагнита создается возможность перемещать его якорь в любое положение, которое является устойчивым для данной силы тока. Такой вид тяговых характеристик электромагнита является необходимым условием для функционирования ЭПС.
Если усилие FSM превысит? усилие пружины 4 (см. рис. 57), то толкатель 28 сместится в левое положение и его подвижное седло 30 отойдет от клапана 31. В результате этого клапан 31 под действием пружины 32 переместится в крайнее левое положение и прижмется к неподвижному седлу 29 (рис. 57, Л). В результате полость 9 через обратный клапан 13 соединится с впускным коллектором 14 двигателя, благодаря чему в данной полости возникнет разрежение, обеспечивающее втягивание поршня 6 внутрь сервокамеры, и, следовательно, уменьшится момент Мс. Если же усилие пружины 4 станет больше силы FSM то подвижное седло, во-первых, закроет центральное отверстие в клапане 31 и тем самым разъединит полость 9 с впускным коллектором двигателя, и, во-вторых, отодвинет клапан от неподвижного седла 29, благодаря чему полость 9 через отверстие 33 в корпусе 34 клапана соединится с атмосферой (рис. 57,5). В результате произойдет уменьшение разрежения в полости 9, вследствие чего, как отмечалось выше, увеличится момент, передаваемый через сцепление.
Усилие Fпр, пружины 4 зависит от положения поршня б, возрастая по мере его втягивания внутрь сервокамеры, а сила FSM, развиваемая электромагнитом, — от силы тока, проходящего через его обмотку. Если при каком-то положении поршня сила Рэм. будет больше усилия пружины ]4, то поршень будет втягиваться внутрь сервокамеры. Но в этом случае из-за сжатия пружины 4 возрастет развиваемое ею усилие, которое при определенном положении поршня становится равным усилию электромагнита. В результате толкатель 28 установится в таком положении, при котором его подвижное седло 30 только закроет центральное отверстие в клапане 31, не отодвигая сам клапан от неподвижного седла 29. В таком положении клапана 31 (рис. 57, Б) будет обеспечено отсоединение полости 9 как от впускного коллектора двигателя, так и от атмосферы, благодаря чему в данной полости установится постоянное разрежение, и дальнейшее перемещение поршня прекратится.
Рис. 57. Схема ЭПС:
1 — бачок системы гидропривода; 2 — рычаг сервокамеры; 3 — шток; 4 и S — пружины; 5 — полость атмосферного давления; 6 — поршень; 7 — мембрана; S — полость регулируемого давления; 10 — корпус сервокамеры; 11 — обмотка электромагнита; 12 — электромагнит; 13 — обратный клапан; 14 — впускной коллектор двигателя; 15 — шток рабочего гидроцилиндра; 16 — выключатель сцепления; 17 — элек тронный блок управления ЭПС; 18 — щиток управления; 19 — рабочий гидроцнлиндр: 20 — якорь электромагнита; 21 — сервокамера; 22 — главный гидроцилиндр сервокамеры; 23 я 24 — гайки; 2S — опора рычага; 26 — главный гидроцилиндр дублера привода сцепления; 27 — педаль дублера привода сцепления; 28 — толкатель; 29 — неподвижное седло; 30 — подвижное седло; 31 — клапан; 32 — пружина; 33 — отверстие для впуска воздуха; 34 — корпус клапана
Если же в процессе работы сервокамеры при каком-то положении поршня усилие Fпр, пружины 4 превысит силу Fэм, то в результате соединения полости сервокамеры с атмосферой это приведет к перемещению поршня 6 в направлении его выхода из сервокамеры. Но в результате уменьшится усилие пружины 4 и, когда оно сравняется с силой FSM, клапан 31 соприкоснется как с подвижным, так и неподвижным седлом. Полость 9 сервокамеры будет отсоединена как от источника разрежения, так и от атмосферы, в ней установится постоянное разрежение и положение поршня 6 не будет изменяться.
Данное положение клапана 31 и толкателя 28 соответствует установившемуся режиму работы сервокамеры. Практически же в процессе ее работы поршень колеблется с небольшой амплитудой и с высокой частотой относительно установившегося его положения. При этом амплитуда колебаний поршня постепенно уменьшается и в случае постоянства силы FЭM, спустя некоторое время, поршень занимает установившееся положение.
Чем выше сила тока Iэм, проходящего через обмотку электромагнита, тем при большем сжатии пружины 4 обеспечивается равенство развиваемого ею усилия Fпр и силы FSM электромагнита. Для обеспечения увеличения усилия пружины 4 поршень 6 должен дальше втянуться внутрь камеры, вследствие чего уменьшается момент Мс. Таким образом, рассматриваемый привод представляет собой следящую систему, в которой элементом обратной связи является пружина 4.
В исходном состоянии ЭПС, соответствующем силе тока Iэм
=0, поршень гидроцилиндра 22 занимает крайнее левое положение, которое не зависит от длины опоры 25 рычага 2. Поэтому с увеличением длины опоры 25 при перемещении влево ее конца шток 3 (и поршень 6) будут втягиваться внутрь сервокамеры. В результате уменьшится полный ход штока 3, так как конечное его положение, соответствующее упору поршня 6 в корпус электромагнита, не изменится. Благодаря этому уменьшается зазор между нажимным и ведомым дисками сцепления в конечном положении штока 3, и для обеспечения начала трогания автомобиля с места нажимной диск должен от своего конечного положения пройти меньшее расстояние. Тем самым достигается начало трогания автомобиля с места при большей силе тока Iэм, чему соответствует меньшее значение пк.
Рис. 58. Зависимости тягового усилия Fэм
от перемещения l якоря и силы тока Iэм в об-мотке электромагнита с втягивающимся якорем: 1 и 2 — с центральным неподвижным сердечником
Изменение исходного положения штока 3 вследствие его перемещения внутрь сервокамеры вызывает сжатие пружины 8. Однако так как пружина 8 рассчитана на небольшое усилие и имеет малую жесткость, ее усилия при регулировании исходного положения штока 3 будут изменяться незначительно. Вследствие этого общее усилие, создаваемое пружинами 4 и 8, при работе ЭПС будет практически зависеть только от характеристики пружины 4. В результате обеспечивается примерное постоянство изменения момента Мс
при перемещении штока 3. Для изменения длины опоры 25 нужно отвернуть гайку 24, а затем, вращая гайку 23, переместить опору в требуемое положение и зафиксировать ее, затянув гайку 24.
Таким образом, в результате изменения положения опоры 25 осуществляется изменение частоты вращения коленчатого вала, соответствующее началу трогания автомобиля с места, а для получения требуемой зависимости Mc=f(nK) достаточно обеспечить с помощью электронной системы управления необходимый закон изменения силы тока Iэм в обмотке электромагнита от частоты вращения пк.
Темп включения сцепления определяется скоростью заполнения полости 9 воздухом, поступающим в нее через отверстия 33 в корпусе 34 при установке клапана 31 в положение, согласно рис. 57,5. Диаметр отверстий 33 выбран таким, что при полностью открытом клапане 31 обеспечивается требуемое быстрое включение сцепления после окончания процесса переключения передач и вместе с тем чрезмерно не увеличиваются нагрузки на узлы трансмиссии.
Принудительное выключение сцепления независимо от частоты вращения коленчатого вала выполняется с помощью входящего в состав ЭПС выключателя 16, установленного в головке рычага переключения передач. Контакты данного выключателя замыкаются, когда водитель прикладывает усилие к рычагу переключения передач. В результате этого к обмотке электромагнита подводится полное напряжение источника питания, что обеспечивает прохождение через нее тока Iэм
=Iэм mах=3,5-4 А.
Законы управления ЭПС, реализуемые с помощью электронной системы управления. Выше было установлено, что закон изменения момента Мс определяется зависимостью силы тока Iэм в обмотке электромагнита сервокамеры от частоты вращения пк коленчатого вала.
Для обеспечения требуемых режимов работы сцепления при различных условиях эксплуатации автомобиля системой управления ЭПС предусмотрена возможность реализации двух режимов работы системы автоматического управления сцеплением — основного и вспомогательного.
Различие между этими режимами заключается в том, что при вспомогательном режиме зависимость Iэм =f(nк) по сравнению с аналогичной зависимостью для основного режима смещена в зону более высоких частот пк, как это показано штриховыми линиями на рис. 59. Благодаря этому при вспомогательном режиме зависимость Mc=f(nK) также смещается в зону более высоких пк, что требуется в случае эксплуатации автомобиля в уо ловиях низких отрицательных температур с плохо прогретым двигателем или при движении автомобиля в тяжелых дорожных условиях (с большим сопротивлением движению).
Рис. 59. Зависимости силы тока Iэм
в обмотке электромагнита ЭПС от частоты вращения пк:
1 — 4 — основной режим работы; 5 — доблокировка, основной режим; 6 — 9 — вспомогательный режим работы; 10 — доблокировка, вспомогательный режим
Для перехода от основного режима к вспомогательному водитель должен переключить выключатель на щитке управления 18 (см. рис. 57).
Основной режим работы системы управления. На основном режиме в диапазоне частот вращения пк от 800 мин-1 (режим холостого хода двигателя) до 2200 мин-1 сила тока Iэм
монотонно уменьшается от 2,2 до 1,2 А (рис. 59, кривая 1).
Вакуумная сервокамера ЭПС спроектирована таким образом, что при прохождении через обмотку ее электромагнита тока силой 2,1 — 2,2 А она обеспечивает полное выключение сцепления, а при силе тока 1,8 — 2 А (соответствующей гск =1100-1300 мин-1) сцепление передает момент Мс, достаточный для трогания автомобиля с места на горизонтальном участке пути. По мере уменьшения силы тока Iэм происходит увеличение момента Мс
и при силе тока 1,2 А (nк = 2200 мин-1), сцепление может передать момент Мс, несколько превышающий максимальный крутящий момент двигателя.
При частоте вращения nк>nб
= 2200 мин-1 происходит уменьшение силы тока от 1,2 А почти до нуля (линия 2), обеспечивающее увеличение момента трения сцепления до максимального значения Мс max, благодаря чему гарантируется блокировка сцепления. Указанное снижение силы тока происходит1 не мгновенно, а в течение примерно 1,5 с, что исключает возможность появления пиковых нагрузок в трансмиссии автомобиля даже при «несогласованной» характеристике Mc=f(nK).
После того, как реализуется режим блокировки сцепления, сила тока Iэм
остается близкой к нулю (линия 3) до тех пор, пока частота вращения пк
не уменьшится до значения ярб=1100 мин-1. При такой частоте вращения сила тока (линия 4) скачкообразно увеличивается до 2 А (режим разблокировки сцепления). Далее сила тока Iэм
в зависимости от частоты вращения пк изменяется по кривой 1 характеристики Iэм = f(nK).
Таким образом, если при движении автомобиля частота вращения коленчатого вала двигателя хотя бы кратковременно превысила 2200 мин-1 и вследствие этого произошла блокировка сцепления, то в дальнейшем сцепление останется заблокированным до тех пор, пока частота вращения коленчатого вала не станет ниже 1100 мин-1. Благодаря этому, как указывалось выше, значительно уменьшается опасность работы сцепления с пробуксовыванием в случае движения автомобиля с низкими скоростями, т. е. исключается основной недостаток большинства известных систем автоматизации управления сцеплением.
Рис. 60. Структурная схема системы управления ЭПС
При частотах вращения пк, меньших nб, имеется возможность подачи команды на включение блокировки сцепления. Такой режим (А. с. 929471, СССР, МКИ3 В 60 К 41/02) реализуется в случае, если во время переключения передач частота вращения пк оказывается больше nдб=1500 мин-1 (линия 5). При этом уменьшается опасность длительной работы сцепления с пробуксовыванием, которая могла бы быть в случае движения автомобиля с низкими скоростями при включенных высших передачах. Вместе с тем такое смещение режима блокировки не оказывает влияния на динамику автомобиля при его трогании с места, поскольку низшая передача, на которой начинается разгон автомобиля, включается еще до начала его разгона, чему соответствует условие nк<nдб. Рассмотренный режим называется доблокировкой сцепления. Отметим, что обычно в системах автоматического управления сцеплением такой режим не предусматривается.
Вспомогательный режим работы системы управления. Зависимости Mc=f(nK) для основного и вспомогательного режимов имеют аналогичный вид и отличаются только тем, что для последнего эта зависимость смещена в зону более высоких частот вращения пк. Вследствие этого во вспомогательном режиме сцепление начинает передавать момент, достаточный для трогания автомобиля с места, при частоте вращения пк= 1700-7-1900 мин-1 (см. рис. 59, линия 6), благодаря чему оказывается возможным увеличить частоту вращения коленчатого вала ях. х
в режиме холостого хода двигателя до 1500 — 1600 мин-1 без опасности резкого включения сцепления при трогании автомобиля с места. В результате можно начинать эксплуатацию автомобиля при плохо прогретом двигателе, у которого во избежание его остановки приходится значительно уЬеличивать частоту вращения лх.х. Во вспомогательном режиме точка пересечения зависимостей Mc = f (пк) и M=f(nK) соответствует частоте вращения nK = 2500-2700 мин-1, при которой двигатель развивает момент, близкий к максимальному. В результате обеспечивается улучшение динамики автомобиля. Однако следует иметь в виду, что так как при вспомогательном режиме резко возрастает работа буксования сцепления, данным режимом нужно пользоваться только в течение короткого промежутка времени, во избежание ускоренного изнашивания накладок ведомого элемента сцепления.
Принцип действия электронной системы управления ЭПС, электрическая схема и конструкция электронного блока автоматики. Структурная схема электронной системы управления ЭПС приведена на рис. 60, а ее принципиальная электрическая схема — на рис. 61.
Стабилизатор напряжения. Стабилизатор напряжения СН предназначен для питания постоянным по величине напряжением (10 — 10,2 В) цепей управления электронного блока, и в том числе элементов частотно-аналогового преобразователя ПЧН и операционных усилителей, входящих в состав регулятора тока и узла блокировки сцепления. По схемотехническому решению стабилизатор СН аналогичен стабилизатору напряжения, выполненному по схеме рис. 6. Он поддерживает стабилизированное напряжение по отношению к положительному полюсу источника питания. Поэтому действие элементов СЯ, обеспечивающих стабилизацию его выходного напряжения, в данном разделе не рассматривается. В дополнение к указанным элементам в состав СН входят также элементы защиты цепей управления электронного блока от перенапряжений в бортовой сети и от подключения блока под напряжение обратной полярности.
Рис. 61. Схема электронной системы управления ЭПС
Защита от перенапряжений осуществляется с помощью стабилитрона VD9 типа Д815Ж (см. рис. 61), включенного последовательно с диодом VD10. Опорное напряжение стабилитрона Д815Ж составляет (18±2,7) В, а падение напряжения в диоде VD10 равно ~0,7 В. При повышении напряжения бортовой сети до 16 — 21,4 В происходит пробой стабилитрона VD9 и создается дополнительная нагрузка для цепи питания электронного блока. Благодаря этому предотвращается появление недопустимых напряжений в данной цепи, поскольку они ограничиваются указанным выше уровнем напряжений. Диод VD10 предотвращает выход стабилитрона VD9 из строя при подключении электронного блока под напряжение обратной полярности. Для защиты цепей управления блока используется транзистор VT24 типа КТ501Ж, переход эмиттер — коллектор которого включен между выводом +12 В блока и шиной +Uст, от которой осуществляется питание цепей управления блока.
Рис. 62. Изменение напряжения на входе электронного блока
При правильном включении блока положительный полюс бортовой сети соединяется с эмиттером, а отрицательный (масса) подключается к базе транзистора VT24. Это обеспечивает открытие транзистора VT24, благодаря чему к шине + UCT подводится напряжение, отличающееся от напряжения бортовой сети на величину падения напряжения в переходе эмиттер — коллектор транзистора VT24 (0,Ы-0,15 В). Если же к электронному блоку подводится напряжение обратной полярности, то транзистор VT24 остается закрытым, а пробой его перехода база — эмиттер не может произойти, поскольку допустимое обратное напряжение для данного перехода у транзистора КТ501Ж составляет 20 В.
Частотно-аналоговый преобразователь. При движении автомобиля происходит быстрое изменение частоты вращения коленчатого вала двигателя. При этих условиях нормальная работа ЭПС оказывается возможной лишь при условии обеспечения высокого быстродействия системы управления, в том числе максимального быстродействия преобразования сигнала, поступающего от датчика частоты вращения коленчатого вала, в напряжение постоянного тока, которое далее используется для изменения силы тока в обмотке электромагнита ЭПС. С учетом данного требовайия в электронном блоке применен ПЧН с преобразованием входного сигнала в течение полуцикла.
Рис. 63. Зависимость итых= =f(nк) для ПЧН при работе ЭПС: 1 — в основном режиме; 2 — во вспомогательном режиме
Входным сигналом для ПЧН является напряжение, подводимое от датчика частоты вращения пк
(прерывателя-распределителя) к выводу 1 электронного блока (рис. 61). Входное устройство ПЧН, состоящее из диода VD1, резисторов Rl, R2, R3 и R7, конденсатора С1 и транзистора VT1, преобразует входное напряжение блока в последовательность прямоугольных импульсов (рис. 62), поступающих на коллектор транзистора VTJ. Дальнейшее преобразование последовательности импульсов в напряжение- Uвых
постоянного тока на выходе ПЧН (коллекторе транзистора VT5) осуществляется таким же образом, как было описано при рассмотрении действия ПЧН, выполненного согласно схеме, приведенной на рис. 35. По сравнению с этой схемой в ПЧН системы управления ЭПС имеется лишь дополнительное устройство изменения характеристики преобразователя (УИХ), осуществляющее изменение зависимости Uвых=f(nк) при переключении ЭПС во вспомогательный режим (рис. 63). Такое переключение водитель осуществляет путем перевода переключателя 5 в положение III (см. рис. 61), благодаря чему напряжение от бортовой сети подводится к выводу 6 блока и далее через резистор R37 к базе транзистора VT13. Это обеспечивает открытие данного транзистора, в результате чего при прохождении коллекторного тока через резисторы R32 и R33 создается дополнительное падение напряжения, приводящее к уменьшению напряжения на базе транзистора VT14 и, следовательно, к снижению напряжения Uвых на выходе ПЧН.
При переключении ЭПС во вспомогательный режим необходимо, чтобы в рабочем диапазоне частот вращения nк=1600-2600 мин-1, соответствующих данному режиму, крутизна характеристики UBblK
= f(nK) была примерно такой же, как и в рабочем диапазоне частот вращения пк =1000-2000 мин-1 основного режима работы ЭПС. Напряжение на выходе преобразующей части ПЧН (эмиттеры транзисторов VT9 и VT10) в зоне частот вращения nK =10004-2000 мин-1
изменяется более интенсивно, чем в диапазоне частот вращения пк= 1600-2600 мин-1. Поэтому для получения одинаковой крутизны характеристики UBЫX=f(nK) ПЧН при обоих режимах работы ЭПС в нем применено решение, обеспечивающее во вспомогательном режиме уменьшение падения напряжения в резисторах R32 и R33 по мере увеличения частоты вращения пк. Это достигается вследствие включения транзистора VT13 по схеме генератора тока. Кроме того, в цепь эмиттера транзистора VT13 включен делитель напряжения, состоящий из параллельно соединенных резисторов R35, R39* и резистора R36. К средней точке делителя через резистор R40 подключен эмиттер транзистора VT13, а к одному из выходов делителя — эмиттер транзистора VT12. Данный транзистор включен по схеме эмиттер-ного повторителя, поэтому напряжение на его эмиттере изменяется соответственно напряжению на базе транзистора, которая подключена к указанному выходу преобразующей части ПЧН. По мере повышения частоты вращения коленчатого вала увеличивается напряжение на базе и эмиттере транзистора VTJ2. Соответственно возрастает и напряжение в средней точке делителя, к которой подключен резистор R40. В результате понижается сила тока в цепях базы и коллектора транзистора VT13, благодаря чему достигается требуемое уменьшение падения напряжения в резисторах 1R32 и R33.
С увеличением сопротивления подстроечного резистора R38* повышается напряжение на базе транзистора VT13, что увеличивает силу тока коллектора данного транзистора и, следовательно, уменьшает выходное напряжение ПЧН. При увеличении сопротивления подстроечного резистора R39* изменение напряжения на выходе преобразующей части ПЧН будет сильнее влиять на режим работы транзистора VT13. Поэтому с увеличением сопротивления резистора R39* возрастает крутизна характеристики UВЫХ= =f(nк) во вспомогательном режиме.
Регулятор силы тока. При постоянном напряжении Uвых, подводимом к входу регулятора силы тока РТ. от выхода ПЧН, данный регулятор должен обеспечивать постоянное среднее значение силы тока Iэм
в обмотке электромагнита ЭПС независимо от напряжения бортовой сети автомобиля и сопротивления обмотки электромагнита. Только при выполнении данного требования может быть обеспечена стабильная работа ЭПС. Необходимо также, чтобы среднее значение силы тока Iэм
изменялось в зависимости от пк, причем по мере возрастания частоты вращения сила тока должна уменьшаться.
Регулятор силы тока (А. с. 901096, СССР, МКИ3 В 60 К 41/02) содержит два функциональных узла: элемент управления ЭУ и выходной усилитель УВ. По принципу действия элемент управления относится к устройствам Импульсного регулирования силы тока. Данный элемент РТ по схеме и принципу действия аналогичен РТ, описанному выше (см. рис. 39). Поэтому режимы работы элемента управления не рассматриваются, а описываются только УВ и некоторые особенности «настройки ЭУ.
В периоды, когда напряжение на инвертирующем входе 4 операционного усилителя DA2 (см. рис. 61), входящего в состав ЭУ, выше напряжения на его неинвертирующем входе 5, напряжение на выходе 10 усилителя небольшое (примерно 1,5 В по отношению к шине — Uct). При этом необходимо с помощью выходного транзистора VT23 отключать обмотку электромагнита ЭПС от источника питания, для чего требуется обеспечить выключение транзисторов VT22, VT21 и VT20, входящих совместно с транзистором VT23 в состав выходного усилителя. С этой целью эмиттер транзистора VT20 подключен к средней точке делителя напряжения, образованного резисторами R72 и R73, а база транзистора — к средней точке делителя напряжения, образованного резисторами R66 и R67.
При номинальных значениях сопротивлений резисторов, указанных на рис. 61, напряжение на эмиттере транзистора VT20 оказывается выше напряжения на его базе, вследствие чего транзистор закрыт.
Когда напряжение на неинвертирующем входе 5 усилителя DA2 выше напряжения на его инвертирующем входе 4, на выходе 10 усилителя появляется высокое напряжение (примерно 8,5 В). При подаче данного напряжения на базу транзистора VT20 через делитель (резисторы R6G и R67) транзистор открывается и работает в режиме насыщения. В результате происходит открытие транзисторов VT21, VT22 и VT23, и обмотка электромагнита ЭПС подключается к бортовой сети через резистор R78 (0,4 Ом).
Транзисторы VT22 и VT23 включены по одной из модификаций схемы составного транзистора. При этом падение напряжения на переходе эмиттер — коллектор включенного транзистора VT23 равно около 1 В, т. е. даже при максимально возможной силе тока нагрузки данного транзистора, не превышающей 3 А, рассеиваемая мощность в транзисторе составит не более 3 Вт.
У транзисторов типа КТ837Х, использованного в качестве выходного транзистора VT23, коллектор соединен с корпусом транзистора. С другой стороны, коллектор транзистора VT23 имеет электрическую связь с массой автомобиля. Это позволяет просто решить проблему охлаждения транзистора VT23 путем его установки непосредственно на корпус электронного блока.
Выше уже отмечалось, что при постоянном напряжении UВЫХ РТ обеспечивает постоянное среднее значение тока Iэм независимо от сопротивления обмотки электромагнита. Это сохраняется и при коротком замыкании обмотки электромагнита. Однако в данном случае резко возрастает частота изменения тока Iэм (на 2 — 3 порядка), так как в короткозамкнутой цепи отсутствует индуктивность. Кроме того, увеличивается разница между минимальным и максимальным значениями силы тока в процессе его изменения, которая имеется при открытии и закрытии выходного транзистора VT23.
В результате указанного существенно увеличивается мощность, рассеиваемая на транзисторе VT23. Именно этот режим является определяющим для выбора размеров охлаждающего радиатора для транзистора VT23.
При применении в качестве выходного транзистора типа КТ837Х, у которого допустимое напряжение база — эмиттер равно 15 В, обеспечивается защита всех элементов усилителя от напряжения обратной полярности. В случае такого подключения, несмотря на соединение базы транзистора VT23 с положительным полюсом бортовой сети, переход база — эмиттер транзистора не будет пробит, а инверсное включение транзистора VT22 также не создаст каких-либо аварийных режимов, поскольку в цепь коллектора транзистора VT22 включен резистор R77 с номинальным сопротивлением 1 кОм.
За счет совместного действия ПЧН, элемента управления и выходного усилителя РТ обеспечивается получение характеристик Iэм =f(пк), приведенных на рис. 59. Наклон этих характеристик можно корректировать с помощью подстроечных элементов РТ. При изменении напряжения UВых на выходе ПЧН напряжение на выводе 4 операционного усилителя DA2 будет меняться тем в больших пределах, чем меньше сопротивление подстроечного резистора R44*. В свою очередь, увеличение диапазона изменения напряжения на выводе 4 DA2 приводит к большим изменениям силы тока Iэм при том же диапазоне изменения частот вращения пк. Вследствие этого возрастает крутизна характеристики Iэм =f(nк). Очевидно, что в результате повышения сопротивления подстроечного резистора R44* будет обеспечено уменьшение крутизны этой характеристики.
В случае повышения сопротивления подстроечного резистора R53* для сохранения прежнего уровня напряжения на выводе 5 усилителя DA2 необходимо соответственно уменьшить напряжение, подводимое к резистору R49. Это возможно только при увеличении падения напряжения в измерительном резисторе R78, т. е. при повышении силы тока Iэм. Поэтому повышение сопротивления резистора R53* приводит к смещению зависимости Iэм = =f(nк) в зону более высоких значений пк, а уменьшение сопротивления резистора R53* — в зону меньших nк.
Узел блокировки сцепления. В состав узла блокировки (УБ) сцепления входят:
пороговое устройство ПУ, вырабатывающее при определенных значениях пк команды на осуществление блокировки и разблокировки сцепления;
элемент плавного включения блокировки (ЭПВ), получающий от порогового устройства команду на блокировку сцепления и реализующий ее вследствие плавного уменьшения силы тока в обмотке электромагнита ЭПС до значения, близкого к нулю. Продол-
жительность указанного процесса уменьшения силы тока составляет 1,5 — 2 с;
элемент корректирования включения блокировки (ЭК), изменяющий после переключения передач настройку порогового устройства для включения блокировки сцепления при уменьшенном значении пк.
Пороговое устройство. Пороговое устройство (ПУ) выполнено в виде операционного усилителя DA1 с положительной обратной связью, реализуемой с помощью транзистора VT2 и резисторов R5 и R6 (см. рис.61).
Напряжение к неинвертирующему входу 5 DA1 подводится от выхода ПЧН, а инвертирующий вход 4 подключен к стабилизированному напряжению питания через делитель напряжения, образованный резисторами R11, R12 и R14 *. При частоте вращения коленчатого вала, меньшей значения nб, напряжение Uвых на выходе ПЧН и, следовательно, на входе 5 DA1 меньше напряжения на входе 4. Поэтому операционный усилитель DA1 работает в режиме с низким уровнем напряжения на его выходе 10 (около 1,5 В). Этого напряжения недостаточно для открытия транзистора VT16 вследствие падения напряжения в диоде VD4 и подведения к эмиттеру транзистора VT16 напряжения от выхода ПЧН (через делитель напряжения, образованный резисторами R57 и R58), При выключенном, транзисторе VT16 команда на включение блокировки не подается. В этот период также закрыт и транзистор VT2, что обеспечивает отключение резисторов R5 и R8* от шины — Ucr. После того, как частота вращения пк возрастает до значения пб, при котором напряжение на входе 5 DA1 становится больше напряжения на его входе 4, операционный усилитель скачкообразно переходит в режим, характеризующийся появлением напряжения высокого уровня (около 8,5 В) на его выходе 10. Скачкообразное переключение DA1 обеспечивается тем, что еще в процессе нарастания напряжения на его выходе открывается транзистор VT2, вызывающий уменьшение напряжения на инвертирующем входе 4 усилителя вследствие подключения к шине — Uст резисторов R5 и R8*. Появление высокого напряжения на выходе 10 усилителя является командой на блокировку сцепления.
После перехода усилителя DA1 в режим с высоким уровнем выходного напряжения вследствие уменьшения напряжения на инвертирующем входе 4 обратное переключение усилителя (в режим с низким уровнем выходного напряжения) может произойти лишь после того, как напряжение UВЫК
на выходе ПЧН снизится до значения, равного уменьшенному напряжению на входе 4 усилителя. Для этого частота вращения коленчатого вала должна снизиться до значения nрб, которое меньше частоты вращения гсб. В результате обеспечивается требуемый характер изменения зависимости Мс = f(nK), при котором снижается работа буксования сцепления. С увеличением сопротивления подстроечного резистора R14* повышается напряжение на инвертирующем входе 4 усилителя DA1. В этом случае для переключения усилителя в режим с высоким уровнем его выходного напряжения к входу 5 необходимо подвести от выхода ПЧН более высокое напряжение. Указанное означает, что увеличение сопротивления резистора R14* смещает частоты вращения nб
и nрб в зону более высоких значений пк. Уменьшение сопротивления резистора R14*, наоборот, уменьшает значения nб и nрб.
Уменьшение сопротивления подстроечного резистора R8* приводит к тому, что после открытия транзистора VT2 снижение напряжения на инвертирующем входе 4 усилителя DA1 происходит в большей степени. В результате увеличивается разность частот вращения лб
и прб. Благодаря этому изменением сопротивления подстроечного резистора R8* обеспечивается регулирование режима разблокировки сцепления.
Элемент плавного включения блокировки (ЭПВ). ЭПВ предназначен для преобразования скачкообразного возрастающего напряжения в плавно повышающееся напряжение, управляющее процессом уменьшения силы тока в обмотке электромагнита ЭПС. Для решения этой задачи в элемент входит интегрирующая цепь, состоящая из конденсатора С10 (см. рис. 61), резисторов R54 и R55 и транзистора VT16, образующих генератор тока.
После переключения операционного усилителя DA1 порогового устройства в режим с высоким напряжением на его выходе происходит постепенная зарядка конденсатора СЮ, в ходе которой также постепенно возрастает напряжение, подводимое к базе транзистора VT16. В результате этого обеспечивается плавное увеличение силы тока коллектора транзистора VT16, следствием чего является уменьшение напряжения на неинвертирующем входе 5 операционного усилителя DA2, сопровождающееся соответствующим уменьшением силы тока в обмотке электромагнита. Постоянная времени цепи зарядки конденсатора С10 выбрана такой, что сила тока Iэм
уменьшается от 1,2 — 1,4 А до значения, близкого к нулю, за 1,5 — 2 с, что достаточно для предотвращения излишне резкого включения сцепления после подачи команды на его блокировку.
Элемент корректировки включения блокировки (ЭК). В состав ЭК (см. рис. 61) входят пик-детектор (диод VD3, конденсатор С6 и резистор R27), эмиттерный повторитель (на транзисторе VT5 и резисторах R19 и R24*) и разделительный диод VD2. Элемент приводится в действие от выключателя сцепления SBC, встроенного в головку рычага переключения передач. Пока водитель не воздействует на рычаг, контакты выключателя SBC разомкнуты, и напряжение от эмиттера транзистора VT23 подводится к конденсатору Сб.
Во время работы электронного блока происходят повторяю- щиеся включения и выключения транзистора VT23, причем когда транзистор VT23 выключен, на его эмиттере появляются импульсы напряжения, близкие по величине к напряжению источника питания. От них происходит зарядка конденсаторов С6, в результате чего на эмиттере транзистора VT5, включенного по схеме эмиттер-ного повторителя, имеется напряжение высокого уровня, препятствующее прохождению1 тока через диод VD2. Тем самым при разомкнутых контактах выключателя sbc исключается влияние элемента корректировки на работу порогового устройства.
Однако когда водитель переключает передачи, автоматически замыкаются контакты выключателя sbc, и к конденсатору С6 перестает подводиться напряжение. В результате он быстро разряжается, что вызывает открытие диода VD2 с подключением к входу 4 усилителя DA1 резисторов R19 и R24*. Уменьшение вследствие этого напряжения на инвертирующем входе 4 усилителя DA1 обеспечивает смещение включения блокировки в зону более низких частот вращения коленчатого вала двигателя.
Если частота вращения nб выбирается на уровне 2100 — 2300 мин-|, то частота вращения пдб, соответствующая подаче команды от элемента корректировки на включение блокировки, устанавливается на уровне 1500 — 1600 мин-1.
На величину nрб элемент корректировки не оказывает влияния. Этот элемент подает команду на перенастройку порогового устройства только при одновременном соблюдении двух условий: nк>nДб и наличие воздействия водителя на рычаг переключения передач для замыкания контактов выключателя sbc-
При трогании автомобиля с места водитель включает низшую передачу, когда двигатель работает с небольшой частотой вращения пк, которая меньше значения пдб. Поэтому в процессе разгона автомобиля на низшей передаче элемент корректировки не влияет на режим блокировки сцепления, что и требуется для быстрого увеличения частоты вращения коленчатого вала в начальной стадии разгона автомобиля. Но уже после перехода на следующую передачу элемент корректировки может вступить в действие для обеспечения скорейшей блокировки сцепления.
Работа ЭПС с электронной системой управления. При трогании автомобиля с места по мере увеличения частоты вращения пк коленчатого вала растет напряжение Uвых на выходе ПЧН, в результате чего уменьшается сила тока Iэм в катушке электромагнита ЭПС. ЭПС обычно регулируется так, что автомобиль трогается с места, когда сила тока Iэм становится равной 1,7 — 1,8 А, чему при основном режиме блока соответствует частота вращения nк= 1100-:-1300 мин-1.
После того, как частота вращения увеличивается до пб = =2100-4-2200 мин-1, напряжение U„ых возрастает до уровня, обеспечивающего срабатывание порогового устройства- узла блокировки сцепления. Пороговое устройство включает элемент плавного включения блокировки, который в течение 1,5 — 2 с уменьшает силу тока в обмотке электромагнита ЭПС до нуля, следствием чего является блокировка сцепления.
После срабатывания узла блокировки сцепления обмотка электромагнита вновь может быть подключена к бортовой сети через регулятор тока (РТ), если вследствие снижения частоты вращения пк до значения Прб= 1100 — 1200 мин-1
напряжение на выходе ПЧН уменьшится до величины, при которой выключится пороговое устройство.
Если передачи автомобиля включаются, когда частота вращения коленчатого вала превышает 1500 — 1600 мин-1 и в процессе переключения она не падает ниже 1200 — 1300 мин*-1, то после окончания переключения передач сцепление будет заблокировано. И в этом случае разблокировка сцепления произойдет, когда частота вращения мк уменьшится до значения лрб, при котором выключится пороговое устройство.
Работа блока во вспомогательном режиме будет протекать аналогично, но трогание автомобиля с места начнется при значении Пк= 1700ч-1900 мин-1, а величины Пб и про составят соответственно 2700 — 3000 мин-1
и 1700 — 2000 мин-1.
ИСПОЛНИТЕЛЬНЫЕ И КОМАНДНЫЕ УСТРОЙСТВА ЭЛЕКТРОННЫХ СИСТЕМ
Любой автоматический или полуавтоматический агрегат автомобиля содержит силовой исполнительный механизм и систему управления им. В зависимости от наличия в автомобиле того или иного источника энергии исполнительные механизмы выполняются с пневматическим, гидравлическим, электромеханическим или электромагнитным приводом.
При использовании для управления исполнительными механизмами электронных систем автоматики связующими элементами между выходными цепями их электронных блоков и исполнительными устройствами является командная электромагнитная или электромеханическая аппаратура управления различного вида.
Наиболее широкое применение в автомобилях нашли исполнительные механизмы с гидравлическим приводом, типичным примером которых являются гидроцилиндры включения фрикционов гидромеханической передачи (ГМП). Управление этими цилиндрами осуществляется с помощью клапанов или золотниковых устройств, на которые в случае применения электронной системы управления ГМП обычно воздействуют командные приводные электромагниты [8, 33].
Примером исполнительного механизма с пневматическим силовым приводом является устройство переключения ступеней механической коробки передач, в котором для перемещения переключающих вилок коробки используют пневмоцилиндры, управляемые клапанным механизмом с электромагнитным приводом клапанов. Необходимая последовательность работы электромагнитов обеспечивается электрической или электронной системой автоматики.
Исполнительные механизмы с электромеханическим или электромагнитным приводом вследствие их неудовлетворительных массовых показателей применяются в основном для воздействия на такие агрегаты, управление которыми не требует создания больших усилий в приводе. Эти исполнительные механизмы, в частности, могут быть использованы для управления узлами топливо-подачи двигателей (например, дроссельной заслонкой карбюратора). Они также конкурентоспособны с исполнительными механизмами, имеющими пневматический или гидравлический привод, в системах переключения передач легковых автомобилей особо малого и малого классов. Наличие электромеханического привода в исполнительном механизме предопределяет и систему управления им, которую выполняют с электромагнитным, электрическими и электронными элементами автоматики.
В тех случаях, когда клапан или золотниковое устройство управления исполнительным механизмом должны иметь только два положения (открыты или закрыты), для их привода обычно используют электромагниты с втягивающимся якорем, имеющие центральный неподвижный сердечник. Концы якоря и центрального сердечника имеют форму усеченного конуса. Такая конструкция электромагнита обеспечивает получение наибольшего тягового усилия по сравнению с электромагнитами других конструктивных исполнений [28].
Рис. 2. Электромагнит следящего действия для привода дроссельной заслонки карбюратора и зависимость хода l якоря от тока I в обмотке:
1 — выводной провод обмотки; 2 — корпус; 3 — возвратная пружина; 4 — передний полюс; 5 — чехол; 6 — шток; 7 — обмотка; 8 — центрирующая втулка; 9 — задний полюс; 10 — якорь; 11 — мембрана демпфера; 12 — крышка
Однако электромагнит с центральным неподвижным сердечником вследствие наличия у него только двух устойчивых положений якоря не может быть использован в системах регулирования, где требуется постепенное перемещение якоря в зависимости от управляющего сигнала. В этом случае возникает необходимость применения электромагнитов так называемого следящего действия (рис. 2,а), якорь которых может занимать различное устойчивое положение при перемещении в зависимости от силы тока, проходящего через обмотку электромагнита (рис. 2,6). Электромагниты такого типа выполняются либо без центрального неподвижного сердечника, либо с различного вида магнитными шунтами (13, 28].
Разработаны электромагниты следящего действия для привода дроссельной заслонки в системах ограничения скорости автомобиля и автоматического управления приводом сцепления [1]. Примером совместного применения электромеханического и электромагнитного исполнительных устройств для создания автоматизированной трансмиссии легкового автомобиля является система «Рено-автоматик» (рис. 3). Исполнительный электромагнит этой системы соединяет ползуны коробки передач с электродвигательным приводом, с помощью которого осуществляется перемещение ползуна, требуемое для включения соответствующей передачи.
Рис. 3. Схема электромеханического исполнительного устройства переключения передач системы «Рено-автоматик»:
1 — электродвигатель с электромагнитным тормозом; 2 — ведущая шестерня; 3 — ведомое колесо; 4 — кулачок; 5 — ролик; б — вилка; 7 — возвратная пружина селектора: 8 и 11 — рычаги привода ползуна; 9 и 10 — ползуны включения передач; 12 — якорь электромагнита привода селектора; 13 — селектор; 14 — обмотка электромагнита
ЭЛЕКТРОННЫЕ И МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ СЦЕПЛЕНИЕМ
ОСНОВНЫЕ ПРИНЦИПЫ АВТОМАТИЗАЦИИ
Сцепление автомобиля предназначено для регулирования момента, передаваемого от двигателя к коробке перемены передач.
Для установления требований к системе автоматического управления сцеплением рассмотрим, какие действия совершает водитель, управляя неавтоматически действующим сцеплением. .Перед началом движения автомобиля водитель должен включить ту или иную передачу в коробке передач. При, работающем двигателе для этого необходимо предварительно полностью выключить сцепление. Далее для трогания автомобиля с места водитель должен одновременно нажимать на педаль подачи топлива и постепенно отпускать педаль управления сцеплением.
При правильно согласованном воздействии на эти педали будет одновременно возрастать как частота вращения пк коленчатого вала, так и момент Мс, передаваемый сцеплением. После того как момент Мс превысит момент М$ сопротивления движению (приведенный к коленчатому валу двигателя), автомобиль тронется с места. По мере увеличения момента Мс
будет возрастать частота вращения пс ведомого элемента сцепления и соответственно увеличиваться скорость движения автомобиля.
Рис. 51. Изменение Мс, пн и лс при разгоне автомобиля с неавтоматически управляемым сцеплением: а и б — отпускание педали управления сцеплением соответственно медленное и быстрое
Когда в процессе разгона автомобиля водитель полностью от-пускает педаль управления сцеплением, момент Мс увеличивается до максимального Мстах, который превышает максимальный крутящий момент Mтах
двигателя. В результате сцепление блокируется, т. е. частоты вращения пс
и пк становятся одинаковыми. Таким образом, в процессе трогания автомобиля с места и последующего его разгона по мере увеличения частоты вращения пк коленчатого вала момент Мс, передаваемый сцеплением, постепенно возрастает от нуля до максимального значения.
Характер зависимости Mc = f(nK) при неавтоматическом управлении сцеплением определяется темпом нажатия водителем на педаль управления сцеплением. Если водитель быстро нажимает на педаль подачи топлива и медленно отпускает педаль управления сцеплением, то это обусловливает интенсивное возрастание пк при незначительном увеличении пс (рис. 51, а). Последующее отпускание педали управления сцеплением вызывает соответствующее повышение момента Мс, что приводит к возрастанию нагрузки двигателя. В результате этого интенсивность увеличения частоты вращения коленчатого вала снижается и даже возможно замедление, если при неравенстве пк и пс момент Мс
В настоящее время практически все автомобильные автоматические трансмиссии массового производства создаются на базе гидромеханических передач (ГМП), которые состоят из гидравлического преобразователя момента (гидротрансформатора) и нескольких автоматически переключаемых передач. Переключение передач осуществляется с помощью фрикционов, имеющих гидро- или пневмопривод. В некоторых конструкциях ГМП такие же фрикционы используют для блокировки гидротрансформатора после того, как коэффициент преобразования их момента (коэффициента трансформации) приближается к единице. При блокировке улучшается топливная экономичность автомобиля, так как при этом исключаются потери в гидротрансформаторе.
Рис. 70. Кинематическая схема двухступенчатой ГМП:
1 — коленчатый вал; 2 — поршень управления фпикционом блокировки гидротрансформатора; 3 — турбинное колесо; 4 — насосное колесо; 5 — реакторы; 6 — ведущий вал; 7 — шестерня понижающей передачи; 8 — поршень включения фрикциона понижающей передачи; 9 — поршень включения фрикциона прямой передачи; 10 — ведомое зубчатое колесо переднего хода; 11 — зубчатая муфта переключения передач; 12 — ведомое зубчатое колесо передачи заднего хода; 13 — ведомый вал; 14 — ведущее зубчатое колесо передачи заднего хода; 15 — промежуточная шестерня; 16 — ведущее зубчатое колесо переднего хода; 17 — фрикцион включения прямой передачи; 18 — промежуточный вал; 19 — фрикцион включения понижающей передачи; 20 — зубчатое колесо привода промежуточного вала; 21 — механизм свободного хода; 22 — фрикцион блокировки гидротрансформатора
В качестве примера выполнения гидромеханической передачи на рис. 70 приведена кинематическая схема ГМП типа ЛАЗ-НАМИ «Львив», устанавливаемой на городских автобусах ЛИАЗ-677 (8).
Особенность протекания процесса переключения передач ГМП можно рассмотреть на примере перехода с передачи, включаемой фрикционом 19, на передачу, включаемую фрикционом 17. При этом происходит одновременное плавное уменьшение момента, передаваемого фрикционом 19, и плавное возрастание момента, передаваемого фрикционом 17 (режим «перекрытия»). В течение всего процесса переключения передач оба фрикциона взаимно пробуксовывают, однако связь через них двигателя с ведущими колесами автомобиля сохраняется — процесс переключения передач происходит без разрыва потока мощности. Во время переключения передач обычно выключается и фрикцион 22 блокировки гидротрансформатора, демпфирующие свойства которого обеспечивают высокую плавность процесса переключения [8, 33].
становится больше момента двигателя М.
С увеличением момента Мс возрастает частота вращения ведомого элемента сцепления и, следовательно, уменьшается разность пк — пс. Начальная стадия разгона автомобиля заканчивается, когда эта разность становится равной нулю, т. е. сцепление блокируется и прекращается его пробуксовывание.
По-иному протекает процесс разгона автомобиля при быстром отпускании водителем педали управления сцеплением (рис. 51,6). Вследствие быстрого возрастания момента Мс, создающего значительную нагрузку двигателю, частота вращения коленчатого вала будет увеличиваться менее интенсивно, а увеличение частоты вращения ведомого элемента сцепления начнется почти сразу же после начала отпускания водителем педали управления сцеплением. В результате существенно уменьшится продолжительность пробуксовывания сцепления.
На основании анализа зависимостей, приведенных на рис. 51, можно сделать следующие выводы. При медленном отпускании водителем педали управления сцеплением вследствие быстрого повышения частоты вращения коленчатого вала еще в начальной стадии процесса (т. е. при неравенстве величин пк и ;лс) двигатель работает в зоне высоких частот вращения, чему соответствует высокий крутящий момент. В результате обеспечиваются высокие динамические качества автомобиля, но наряду с этим увеличивается работа буксования сцепления, что отрицательно влияет на его долговечность.
При быстром отпускании водителем педали управления сцеплением вследствие медленного увеличения частоты вращения коленчатого вала двигатель в начальной стадии процесса развивает относительно небольшой крутящий момент, что отрицательно сказывается на динамических качествах автомобиля. Для данного режима характерна также небольшая работа буксования сцепления, что обеспечивает благоприятный его температурный режим и минимальное изнашивание фрикционных элементов.
Известно большое число различных систем автоматического регулирования момента, передаваемого сцеплением. Однако в настоящее время преимущественно применяются системы, обеспечивающие увеличение момента Мс с повышением частоты вращения nh коленчатого вала. Именно по такой закономерности, как это было показано выше, изменяется момент Мс
при неавтоматическом управлении сцеплением.
Рис. 52. Влияние зависимости Мс=1(пн) на режимы совместной работы двигателя и сцепления
Если в автомобиле используется неавтоматическое сцепление, то водитель по своему усмотрению в зависимости от условий эксплуатации может выбирать такой темп его включения, при котором обеспечиваются оптимальные условия работы сцепления и движения автомобиля. При использовании автоматически действующего сцепления практически невозможно для всех условий эксплуатации автомобиля обеспечить оптимальный режим работы сцепления. Поэтому при создании системы автоматического управления сцеплением зависимость Mc
= f(nK) приходится выбирать, исходя из компромиссных требований обеспечения высоких динамических показателей автомобиля и минимальной работы буксования сцепления.
Рассмотрим влияние характера зависимости Mc=f(nK) на режимы совместной работы двигателя и сцепления. На рис. 52 приведены три такие зависимости (кривые 1 — 3), имеющие различный наклон, и внешняя характеристика двигателя M=f(nK) (кривая 4). Зависимость Mc = f(nK), изображенная кривой 1, пересекает характеристику M=f(nK) в точке с координатами пк = = nм max и M = Mmах. Это означает, что в начальный период разгона, когда сцепление еще пробуксовывает, частота вращения коленчатого вала может увеличиваться до частоты вращения пк = — nм max, при которой двигатель развивает максимальный момент. Выше уже отмечалось, что при этом обеспечиваются наилучшие динамические показатели автомобиля, но повышается работа буксования сцепления.
Рис. 53. Влияние зависимости Mc=f(nK) на режимы блокировки сцепления
Пересечение кривой 3 зависимостью M = f(nK) характеризуется значением пк = пу (где пу — минимальная устойчивая частота вращения коленчатого вала при работе двигателя на внешней характеристике, т. е. с полной подачей топлива). В этом случае сцепление пробуксовывает только при пк<пу, в результате чего значительно уменьшается работа буксования сцепления. Но одновременно заметно ухудшаются динамические показатели автомобиля, поскольку момент Му
существенно меньше момента Aimax- Поэтому системы автоматического управления обычно проектируют таким образом, чтобы в точке пересечения зависимостей Mс=f(nк) и M=f(nк) (при пк=лп) крутящий момент двигателя составлял (0,85-f-0,9) Л1Шах (кривая 2). В этом случае обеспечивается как получение приемлемых динамических показателей автомобиля, так и относительно небольшой работы буксования сцепления. Следует иметь в виду, что в некоторых случаях можно получить не одну, а несколько различных зависимостей Mc=f(nK). Тем самым значительно улучшаются показатели автомобиля, оборудованного автоматически действующим сцеплением. Так, например, если при включении в коробке передач низшей передачи система управления позволяет получить зависимость MC=f(IK), соответствующую кривой 1 или 2, а при включении высших передач — кривой 3, то в процессе разгона автомобиля на низшей передаче достигаются заданные высокие динамические показатели автомобиля, а после перехода на высшие передачи уменьшается до минимума работа буксования сцепления.
В условиях эксплуатации автомобиля, характеризующихся многократно повторяющимися увеличениями и уменьшениями частоты вращения пк, значительное снижение продолжительности работы сцепления с пробуксовыванием может быть достигнуто при зависимости Mc=f(nK), изображенной на рис. 53 сплошными линиями.
При повышении частоты вращения пк от значения nх. х, соответствующему режиму холостого хода двигателя, до пк<п6 (где nб — частота вращения, соответствующая блокировке сцепления) изменение момента Мс соответствует участку 1 — 2 характеристики Mc=f(nK). После того, как частота вращения пк увеличится до значения nб, момент Мс сцепления скачкообразно возрастет до значения Mcmax (участок 2 — 3) и останется неизменным до тех пор, пока частота вращения пк
не уменьшится до nу, при которой еще возможна устойчивая работа двигателя на его внешней характеристике (участок 3
— 4 характеристики Мс=f(nк)). Очевидно, что в диапазоне частот вращения пу
— nб будет исключена работа сцепления с пробуксовыванием, поскольку на участке 3 — 4 Mc = Mcmai>M. Лишь после уменьшения частоты вращения nK до значения пу произойдет скачкообразное уменьшение момента Afc (участок 4 — 5) с установлением его значения в соответствии с участком 1 — 2 характеристики Mc=f(nK) при пк=пу.
Таким образом, если в процессе разгона автомобиля хотя бы на одной из передач частота вращения пк достигла значения пб, то сцепление будет работать без пробуксовывания во всем рабочем диапазоне частот вращения коленчатого вала.
Из рис. 53 следует, что при изменении момента Мс в соответствии с участком 1 — 2 характеристики Mc=f(nK) после повышения частоты вращения коленчатого вала до частоты вращения лк=пп, при которой Mc=M, должно прекращаться пробуксовывание сцепления. В связи с этим характер зависимости Afc=f(nK) при частотах вращения пк>nп
не влияет на нагрузочный режим как самого сцепления, так и других узлов трансмиссии, а также на динамические показатели автомобиля. Следовательно, целесообразно сразу же после повышения частоты вращения коленчатого вала до пк=пп
обеспечивать увеличение момента сцепления до значения Мсшах и тем самым уменьшать продолжительность работы элементов привода сцепления (например, его выжимного подшипника) под нагрузкой. Такой характер изменения момента Мс наблюдается на участке 2 — 3 характеристики Mc = f(nK) при значении nб, близком к nп.
Следует, однако, иметь в виду, что в условиях массового производства невозможно получить точное совпадение характеристик M=f(nK) и Mc=f(nK) у различных двигателей и сцеплений. Кроме того, в процессе эксплуатации автомобиля данные характеристики также меняются. Поэтому практически невозможно во всех случаях обеспечить равенство моментов Мс и М в точке, соответствующей пк = пп. В частности, если вследствие изнашивания рабочих поверхностей сцепления или уменьшения их коэффициента трения (например, из-за нагрева) уменьшатся моменты Мс, то это приведет к тому, что при частоте вращения пк = пи
момент МС<M.
Рис. 54. Влияние зависимости Mс=f(а) на режимы совместной работы двигателя и сцепления:
1 — 4 — Мс=f(лк) при различных углах а; 5 — 8 — M=f(nK) — соответственно при тех же углах а
Для иллюстрации на рис. 53 штриховыми линиями изображена зависимость Mc = f(nK), соответствующая применению сцепления с величинами Мс меньшими, чем у сцепления с характеристикой, очерченной линиями 1 — 2, 2 — 3, 3 — 4 и 4 — 5. В этом случае скачкообразное увеличение момента Мс при частоте вращения пк = nп произойдет при МС<М, вследствие чего резко увеличится нагрузка в трансмиссии. В этом случае такую зависимость Mc = f (пк) называют несогласованной. Для исключения возникновения подобного режима при реально встречающихся в эксплуатации изменениях характеристик двигателя и сцепления целесообразно после подачи команды на полное включение (блокировку) сцепления увеличить продолжительность такого включения до I — 1,5 с. В этом случае при пк=пп будет обеспечено полное включение сцепления, исключающее его пробуксовывание, а сам процесс блокировки сцепления будет происходить без перегрузок в трансмиссии.
Применение систем автоматизации, обеспечивающих получение указанных зависимостей М=f(nк), не является единственно возможным путем создания автоматически действующих сцеплений. Задача может быть решена и с помощью систем автоматизации, повышающих момент Мс
с увеличением угла а открытия дроссельной заслонки.
Основным элементом таких систем является вакуумный усилитель следящего действия, т. е. механизм, применяющийся в различных приводах автомобильных агрегатов (например, в усилителях привода тормозных механизмов). Возможность применения для автоматизации управления сцеплением механизмов, широко используемых в автомобилестроении, очевидно, явилось одной из основных причин разработки данных систем несмотря на то, что по некоторым показателям они уступают системам автоматизации, обеспечивающим функциональную зависимость Mc=f(nK). Для исключения пробуксовывания сцепления при больших углах а систему управления сцеплением проектируют так, чтобы при таких углах величина Мс была больше М при всех частотах вращения пк (рис. 54, кривые 4 и 8). Наряду с этим при малых и средних значениях а в определенном диапазоне значений пк должно выдерживаться соотношение М>МС
(кривые 1 и 5, 2 и 6, 3 и 7). Данное условие является необходимым для обеспечения пробуксовывания сцепления в процессе разгона автомобиля. С ростом угла а увеличиваются частоты вращения пп1, nп2 и пп3, при которых М = МС
и, следовательно, прекращается пробуксовывание сцепления (рис. 54, точки А, Б и В). Поэтому чем больше угол а, тем в большем диапазоне величин пк
происходит пробуксовывание сцепления. По данному показателю рассматриваемая система управления не имеет отличий от систем с зависимостями Mc = f(nK).
Одним из существенных недостатков систем автоматизации с зависимостью Mc = f(a) является неполное включение сцепления при движении автомобиля при малых и средних углах а. Для исключения этого недостатка, создающего неблагоприятные условия работы выжимного подшипника сцепления, в систему управления сцепления вводят дополнительные устройства, вырабатывающие команду на полное включение сцепления при определенной частоте вращения коленчатого вала двигателя или скорости движения автомобиля. Реализация команд обычно обеспечивается клапанными устройствами с электромагнитным приводом, которые действуют параллельно со следящим вакуумным усилителем. Использование рассматриваемой системы не позволяет в полной мере реализовать динамические показатели автомобиля при разгоне в результате быстрого полного открытия дроссельной заслонки. Так как Mc>M, при всех значениях пк произойдет остановка двигателя. По этой же причине у данной системы несколько хуже показатели и с точки зрения обеспечения возможности тро-. гания автомобиля с места на подъеме, а также в тяжелых дорожных условиях.
При автоматическом управлении сцеплением для обеспечения нормального переключения передач необходимо сразу же после подачи команды на переключение быстро выключить сцепление независимо от частоты вращения коленчатого вала (за 0,15 — 0,25 с). После же включения новой передачи должен быть выдержан оптимальный для данных условий эксплуатации темп включения сцепления, который обеспечивал бы без перегрузки трансмиссии требуемую динамику разгона автомобиля. С этой целью в некоторых системах автоматизации управления сцеплением предусматривается изменение темпа включения сцепления в зависимости от разрежения во впускном коллекторе двигателя или положения педали подачи топлива в двигатель, т. е. факторов, характеризующих нагрузку двигателя. Чем выше нагрузка двигателя, тем быстрее должно включаться сцепление.
С учетом изложенного система автоматического управления сцеплением, реализующая зависимость Mc=f(nK), должна удовлетворять следующим основным требованиям:
обеспечивать командными и исполнительными устройствами максимальную быстроту выключения сцепления (за 0,15 — 0,25 с) независимо от частоты вращения коленчатого вала;
осуществлять монотонное увеличение момента, передаваемого сцеплением, по мере повышения частоты вращения коленчатого вала двигателя (в заданном диапазоне частот вращения). При этом режиму холостого хода двигателя должно соответствовать полное выключение сцепления, а после увеличения частоты вращения коленчатого вала до заданного значения должна обеспечиваться блокировка сцепления, исключающая его пробуксовывание;
после! повышения частоты вращения коленчатого вала до заданного значения последующее ее снижение не должно вызывать уменьшения момента, передаваемого сцеплением, до тех пор, пока частота вращения не снизится ниже заданного предела;
при единой для всех режимов движения автомобиля зависимости момента, передаваемого сцеплением, от частоты вращения коленчатого вала двигателя ее пересечение с внешней характеристикой двигателя должно происходить в точке, соответствующей крутящему моменту двигателя, равному 85 — 90 % его максимального значения;
обеспечивать возможность изменения характера зависимости момента, передаваемого сцеплением, от частоты вращения коленчатого вала (при поступлении команд от аппаратуры, управляемой водителем, или срабатывающей автоматически);
после поступления команды на блокировку сцепления продолжительность ее реализации должна составлять 1 — 1,5 с;
темп включения сцепления после переключения передач должен зависеть от режима движения автомобиля и нагрузки двигателя. Кроме выполнения указанных требований, система автоматического управления сцеплением должна иметь высокую надежность и минимальную стоимость. Минимальными также должны
быть масса и размеры электронного блока системы управления. Автоматически действующее сцепление может быть использовано в автомобиле и как самостоятельный узел, и как составной элемент полуавтоматической или автоматической трансмиссии.
При использовании автоматически действующего сцепления в составе автоматической трансмиссии требования, связанные с изменением характеристики Mc = f(nK) в зависимости от условий работы автомобиля, как правило, являются обязательными для обеспечения высокого технического уровня такой трансмиссии.
Включение и выключение фрикционов 17, 19 и 22 осуществляется с помощью гидроцилиндров соответственно 9, 8 и 2, управляемых клапанами, на которые воздействуют электромагниты системы управления. Поэтому основной задачей автоматической системы управления ГМП является коммутирование тока в обмотках электромагнита в соответствии с требуемым законом. Системы автоматического управления ГМП значительно проще, чем аналогичные системы коробок передач иных типов. Эти преимущества в сочетании с высокой плавностью переключения передач обусловили широкое применение ГМП в современном автомобилестроении, несмотря на то что конструкция их существенно сложнее (следовательно, выше стоимость), чем у обычных механических коробок передач и сцепления автомобилей, а КПД их ниже.
Ввиду широкого распространения гидромеханических передач улучшение их показателей представляет особый интерес. Это является стимулом для создания электронных систем управления ГМП.
ЭЛЕКТРОННЫЕ СИСТЕМЫ
На некоторых моделях автобусов фирмы «Вольво» (Швеция) применяется электронная система управления ГМП с «жесткой логикой». В состав электронного блока системы управления в основном входят дискретные элементы и только несколько интегральных микросхем. Управление переключением передач осуществляется в зависимости от скорости движения автобуса и нагрузки двигателя. В качестве датчика скорости автобуса используется индукторный датчик, частота выходного сигнала которого пропорциональна частоте вращения ведомого вала ГМП. Датчиком нагрузки двигателя является ступенчатый электрический переключатель, связанный с педалью подачи топлива.
Рис. 71. Структурная схема электронной системы управления ГМП автобусов
Опыт длительной эксплуатации автобуса, оборудованного ГМП с такой системой управления, показал высокую ее надежность. В качестве примера выполнения элементов, входящих в электронную систему управления ГМП, ниже приведено описание отечественной системы управления ГМП автобусов большой вместимости.
Электронная система управления ГМП городских автобусов
Рассматриваемая электронная система предназначена для автоматического управления трехступенчатой гидромеханической передачей с блокируемым гидротрансформатором. По мере разгона автобуса происходит последовательное переключение передач с первой до третьей и далее блокируется гидротрансформатор. Кроме этого, электронная система выполняет защитные функции.
Структурная схема электронной системы управления показана на рис. 71, ее электрическая схема и электронный блок — на рис. 72 и 73, а подключение внешних устройств к электронному блоку — на рис. 74. Схема стабилизатора напряжения СИ и ПЧН приведена на рис. 5 и 17.
В качестве датчика скорости ДС автобуса (см. рис. 71) использован индукторный датчик (см. рис. 43), расположенный над одним из зубчатых колес, установленных на ведомом валу ГМП. Поэтому частота изменения ЭДС на выходе датчика ДС пропорциональна частоте вращения данного вала ГМП, т. е. пропорциональна скорости движения автобуса.
Рис. 72. Схема электронного блока системы управления ГМП автобусов
Рис. 73. Электронный блок системы управления ГМП автобусов
Датчик нагрузки ДН двигателя выполнен в виде двух переключателей S1 и S2, приводимых от педали подачи топлива.
Рис. 74. Схема подключения аппаратуры управления и электромагнитов системы управления ГМП к электронному блоку: К.У — контроллер управления; Sгз — включатель гидрозамедлителя; S1, S2 — микропереключатели датчика нагрузки двигателя; ЭМ1, ЭМ2, ЭМ3, ЗМвд, ЭЛ1з.х — электромагниты системы управления
До тех пор, пока эта педаль находится в положениях, соответствующих подаче менее 50 % максимального значения величины подачи топлива, ни один из переключателей датчика нагрузки не срабатывает (положение контактов переключателей показано на рис. 74). Переключатель S1 срабатывает, когда педаль устанавливается в любое из положений, при которых подача топлива в двигатель составляет от 50 до 100 % максимального ее значения.
Для обеспечения срабатывания переключателя S2 водитель должен установить педаль подачи топлива дальше Положения, соответствующего 100 % подаче топлива в двигатель, преодолев при этом усилие дополнительной пружины. Такой режим носит название «кикдаун», и используется для принудительного включения понижающей передачи автобуса с целью повышения его динамики в процессе обгона.
Помимо основного режима управления гидропередачей, при котором по мере разгона автобуса осуществляется автоматическое переключение всех передач и блокировка гидротрансформатора (положение ЗА контроллера), в системе управления предусмотрены еще следующие режимы:
автоматического переключения первой и второй передач с блокировкой гидротрансформатора после разгона автобуса на второй передаче до заданной скорости (положение 2А контроллера);
принудительного включения первой передачи независимо от скорости движения автобуса (положение 1 контроллера);
принудительного включения передачи заднего хода независимо от скорости движения автобуса (положение З.Х. контроллера).
Кроме того, обеспечивается возможность установки передачи в нейтральное положение (положение Н контроллера).
Задание необходимого режима работы системы управления ГМП осуществляется с помощью контроллера управления КУ, схема подключения которого к электронному блоку приведена на рис. 74.
В табл. 19 указан порядок подключения электромагнитов системы управления к источнику питания в зависимости от включаемой передачи и положения контроллера управления.
Узел пороговых устройств. Команды на переключение передач и блокировку гидротрансформатора вырабатывает пороговое устройство системы управления в зависимости от уровня напряжения на выходе ПЧН и положения переключателей датчика нагрузки ДН. Эти пороговые устройства выполнены на базе токо-разностных усилителей DAI, DA2 и DA3 (см. рис. 71). В режимах автоматического переключения передач ЗА и 2А напряжение к резистору R1 не подводится, вследствие чего транзистор VT1 закрыт, и резистор R10 отключен от массы.
В первом положении датчика нагрузки контакты переключателей S1 и S2 (см. рис. 74) замкнуты, что приводит к замыканию на массу (соответственно через диоды VD5, VD6, VD7, VD8, VD9, VD10) резисторов R14, R15, R16, R19, R20, R21 (см. рис. 72).
Во втором положении датчика нагрузки контакты S1 размыкаются, вследствие чего с массой оказываются соединенными только резисторы R19, R20, R21.
Третьему положению датчика нагрузки соответствует размыкание и замыкание соответствующих контактов переключателя S2. В этом случае с массой оказываются соединенными резисторы
R42, R44 и R46 (соответственно через диоды VD12t VD13 и VDI4). Изменение подключения резисторов в зависимости от положения переключателей S1, S2 датчика нагрузки обеспечивает корректировку переключения передач в соответствии с нагрузкой двигателя.
19. Порядок включения электромагнитов системы управления
Положение контроллера |
Включаемая передача |
Электромагниты |
||||
ЭМ1 |
ЭМ2 |
ЭМ3 |
ЭМ6Л |
Мз.х |
||
ЗА |
Первая Вторая Третья Третья** |
+ — — — |
— + — — |
— — + + |
— — — + |
— — — — |
2А |
Первая Вторая Вторая** |
+ — — |
— + + |
— — — |
— — + |
— — — |
1 |
Первая |
+ |
— |
— |
— |
— |
3. X |
Задний ход |
— |
— |
— |
— |
+ |
Н |
Нейтральное положение |
— |
— |
— |
— |
— |
* + — электромагнит включен, — — выключен.
** С режимом блокировки гидротрансформатора.
Управление переключением с первой на вторую передачу и обратно осуществляется пороговым устройством на базе усилителя DA1. Если в автобусе педаль подачи топлива находится в положении, соответствующем первому положению датчика нагрузки, то сила тока Iи, проходящего через инвертирующий вход усилителя, определяется сопротивлением резисторов R7, R14, R19, R29 и установкой подвижного контакта регулировочного переменного резистора R24.
Сила тока Iн, проходящего через неинвертирующий вход усилителя DA1, зависит от напряжения Uy
на выходе ПЧН и сопротивления резистора R30. При низкой скорости движения автобуса величина Uy мала, в связи с чем Iи>Iн, усилитель закрыт и на его выходе напряжение близко к нулевому значению. Когда же вследствие возрастания скорости автобуса до значения vI—II, соответствующего переключению с первой передачи на вторую, сила тока Iи становится больше, чем Iи, то на выходе усилителя появляется напряжение. Это напряжение через делитель напряжения, образованный резисторами R41, R42 (см. рис. 72), и резистор R35 подводится к неинвертирующему входу усилителя DA1. В результате возникающей положительной обратной связи происходит лавинообразное увеличение силы тока Iн, обеспечивающее переход усилителя в режим с высоким уровнем напряжения UВых на его выходе. Появление напряжения UВЫХ является сигналом для переключения с первой на вторую передачу.
Для переключения со второй на первую передачу скорость автобуса должна снизиться до значения VII-I, при котором сила тока Iн станет меньше значения Iи.
При включенной второй передаче, вследствие действия в делителе DA1 положительной обратной связи, уменьшение силы тока Iн до значения, соответствующего Iи, произойдет при скорости VII-I. которая меньше скорости VI-II. Тем самым предотвращается цикличность переключения передач.
При установке педали подачи топлива в положение, соответствующее второму положению датчика нагрузки, вследствие отключения от массы резистора R14 (см. рис. 72), уменьшается падение напряжения в резисторе R7, благодаря чему возрастает сила тока Iи, проходящего через инвертирующий вход усилителя DA1. В результате переключение с первой на вторую передачу и обратно будет происходить при более высоких уровнях напряжения на выходе ПЧН и соответственно при больших скоростях движения автобуса.
На режиме кикдаун вследствие отключения от массы резисторов R14 и R19 переключение с первой на вторую передачу и обратно будет происходить при еще более высоких скоростях движения автобуса. Наряду с этим из-за подключения к массе резистора R42 уменьшится напряжение на средней точке делителя напряжения, образованного резисторами R41 и R48, что приведет к ослаблению эффекта положительной обратной связи в усилителе DA1. Это необходимо для расширения диапазона скоростей автобуса, где может быть реализовано действие режима кикдаун.
Управление переключением со второй на третью передачу и обратно осуществляется пороговым устройством на базе усилителя DA2. Оно действует точно так же, как и пороговое устройство на базе усилителя DA1. Аналогичным образом действует и пороговое устройство на базе усилителя DA3, управляющее включением и выключением блокировки гидротрансформатора.
20. Таблица истинности дешифратора К511ИД1
Номер строки |
Уровень напряжения на входах |
Номер выхода, соединенного с массой |
|||||||
1 |
2 |
4 |
|||||||
Предусмотренные комбинации входных сигналов |
|||||||||
1 |
0 |
0 |
0 |
0 |
|||||
2 |
1 |
0 |
0 |
1 |
|||||
3 |
1 |
1 |
0 |
3 |
|||||
4 |
1 |
1 |
1 |
7 |
|||||
Непредусмотренные комбинации входных сигналы |
|||||||||
5 |
0 |
1 |
1 |
6 |
|||||
6 |
1 |
0 |
1 |
5 |
|||||
7 |
0 |
1 |
0 |
2 |
|||||
8 |
0 |
0 |
1 |
4 |
|||||
Узел логики (УЛ). При движении автобуса с низкой скоростью напряжения на выходах усилителей DAI, DA2 и DA3 (см. рис. 72) близко к нулю, что соответствует уровню «логического 0» для устройств, осуществляющих последующую обработку данных сигналов. По мере разгона автобуса высокое напряжение вначале появляется на выходе усилителя DA1, а затем последовательно на выходах усилителей DA2 и DA3. Данный уровень напряжения является уровнем «логической 1» при последующей обработке сигналов, которая выполняется с помощью дешифратора DD1, в качестве которого применена интегральная микросхема типа К511ИД1. Дешифратор осуществляет преобразование различных комбинаций сигналов на выходе усилителей DAI, DA2 и DАЗ в сигналы, необходимые для включения в заданной последовательности усилителей питания электромагнитов системы управления.
Дешифратор К511ИД1 имеет четыре входа, из которых используются только три (1, 2 и 4). В зависимости от комбинации сигналов с уровнями «логического 0» или «логической 1», подводимых к входам дешифратора, какой-либо один из его выходов соединяется с массой.
Таблица истинности дешифратора (табл. 20) содержит указания, каким комбинациям сигналов на входе дешифратора соответствует соединение с массой того или иного его выхода.
При выполненном в схеме управления соединении выхода усилителя DA1 с входом 1 дешифратора и выходов усилителей DA2, DA3 соответственно с входами 2 и 4 дешифратора напряжение с уровнем «логической I» может появиться на входе с более высоким номером только при наличии такого уровня на входах с более низкими номерами. Такие комбинации сигналов, указанные в строках 1 — 4 табл. 20, в дальнейшем будут обозначаться термином «предусмотренные», поскольку они соответствуют нормальной работе пороговых устройств. Любая другая комбинация сигналов на входах дешифратора, указанная в строках 5 — 8 табл. 20, возможна только при нарушении нормальной работы пороговых устройств. Поэтому в дальнейшем такие комбинации сигналов обозначаются термином «непредусмотренные».
21. Подключение выходных усилителей питания электромагнитов к выходам дешифратора
Передача |
Электромагнит |
Транзисторы усилителя |
Номер выхода дешифратора, соединенного с усилителем |
|
Выходной |
Предвыходной |
|||
Положение ЗА контроллера |
||||
Первая |
ЭМ1 |
VT15 |
VT10 |
0 |
Вторая |
ЭМ2 |
VT16 |
VT11 |
1 |
Третья |
ЭМЗ |
VT12 |
VT17 |
3 |
Третья* |
ЭМЗ |
VTJ2 |
VT17 |
3 |
ЭМбл |
VT13 |
VT18 |
7 |
|
Задний ход |
ЭМз.х |
VT14 |
VT8 |
|
Положение 2А контроллера |
||||
Первая |
ЭМ1 |
VT15 |
VT10 |
0 |
Вторая |
ЭМ2 |
VT16 |
VT11 |
1 |
Вторая* |
ЭМ2 |
VT16 |
VT11 |
1 или 3 |
эмбл |
VT14 |
VT18 |
7 |
Для обеспечения в процессе разгона автобуса порядка включения электромагнитов, указанного в табл. 19, соединение входов усилителей питания электромагнитов с выходами дешифратора выполнено в соответствии с данными табл. 21 (режимы ЗА и 2А).
При работе гидрозамедлителя во время движения автобуса на второй и третьей передачах в системе управления осуществляется блокировка гидротрансформатора. Это необходимо для того, чтобы в дополнение к тормозному эффекту от работы гидрозамедлителя получить дополнительное тормозное усилие за счет реализации режима торможения двигателем. После включения в ГМП первой передачи во избежание остановки двигателя в процессе торможения автобуса осуществляется разблокировка гидротрансформатора. Это обеспечивается подключением базы транзистора VT6 через резистор R73 к выводу 1 разъема Х2, в результате чего данный транзистор открывается одновременно с подачей команды на включение гидрозамедлителя. Вход усилителя включения блокировки гидротрансформатора (резистор R83) через переход коллектор — эмиттер транзистора VT6 и диоды VD22 и VD23 соединяется соответственно с выходом 1 или 3 дешифратора, один из которых оказывается соединенным с массой при включении в ГМП второй или третьей передач. Тем самым на данных передачах обеспечивается блокировка гидротрансформатора, и ее отключение после включения в ГМП первой передачи,-поскольку при этом отключаются от массы выходы 1 и 3 дешифратора.
Принудительное выключение электромагнита ЭМЗ в режиме 2А обеспечивается за счет соединения вывода 3 разъема XI с базой транзистора VT12 (через диод VD31). Благодаря этому в режиме 2А напряжение от бортовой сети подводится к базе транзистора VTI2, что приводит к закрытию транзисторов VT12 и VT17, требуемому для выключения электромагнита ЭМЗ.
При установке контроллера в положение 2А электромагнит ЭМ2 должен оставаться включенным даже в том случае, когда вследствие разгона автобуса напряжение высокого уровня появится на выходе усилителя DA3 и входе 4 дешифратора, в результате чего произойдет отключение от массы выхода 1 дешифратора (к которому подключен вход усилителя питания электромагнита ЭМ2). Для обеспечения данного требования в схеме использован транзистор VT9, база которого через резистор R75 подключена к выводу 3 разъема XI. В положении 2А контроллера данный транзистор открывается, благодаря чему через его переход коллектор — эмиттер и диод VD26 соединяются между собой выход 1 и выход 3 дешифратора, который подключается к массе, как только от нее отключается выход 1 дешифратора. В результате сохраняется замкнутой входная цепь усилителя питания электромагнита ЭМ2.
Блок выходных усилителей (БУ). Все выходные усилители выполнены по одинаковой схеме. Каждый из них содержит два коммутирующих транзистора (выходной и предвыходной). Коллектор выходного транзистора соединен с обмоткой электромагнита ГМП, а база предвыходного транзистора через резистор подключена к соответствующему выходу дешифратора. Эмиттер выходного транзистора через небольшой резистор узла защиты от перегрузки, контакты KALI (см. рис. 72) реле КА1 защиты и соответствующие контакты контроллера управления подключается к бортовой сети автобуса. Выходной усилитель открывается, когда соединяется с массой выход дешифратора, к которому подключена база предвыходного транзистора усилителя.
В положении 1 контроллера должны быть отключены электромагниты ЭМ2 и ЭМЗ. Для выполнения этого требования база транзистора VT12 через диод VD3J, а база транзистора VT11 через диод VD37 подключены к выводу 4 разъема XI. В результате при установке контроллера в положение 1 напряжение бортовой сети окажется подведенным к базе транзисторов VTJ1 и VT12, что обеспечит закрытие транзисторов VT11 и VT16, требуемое для выключения электромагнита ЭМ2, и транзисторов VT12 и VT17, необходимое для выключения электромагнита ЭМЗ.
Защита усилителей питания электромагнитов от перегрузки по току (в том числе при коротком замыкании в их выходной цепи) осуществляется элементами защиты, входящими в состав усилителя. Так, например, для защиты усилителя питания электромагнита ЭМ1 первой передачи используются транзисторы VT20 и VT25, конденсатор С7 и резисторы R94, R99, R105 и R106. Принцип действия такой защиты был описан выше (см. рис. 40). После срабатывания данной защиты для ее отключения необходимо переключение дешифратора в положение, соответствующее размыканию входной цепи усилителя, защита которого сработала, или следует установить контроллер управления в положение Н для отключения электронного блока от источника питания.
Блок, принудительного включения передач. Блок БП обеспечивает возможность принудительного включения первой передачи и передачи заднего хода при установке контроллера управления в положения соответственно 1 и З.Х (см. рис. 74).
В положении 1 контроллера напряжение от бортовой сети через вывод 4 разъема XI, диод VD40 (см. рис. 72), контакты КА1.1 реле КА1 защиты и резистор R105 подводятся к эмиттеру транзистора VT15 усилителя питания электромагнита ЭМ1, а через , резистор R69 и стабилитрон VD21 данное напряжение подводится к базе транзистора VT8. Это обеспечивает открытие транзистора VTS, в результате чего включаются транзисторы VT10 и VT15, осуществляя подключение к бортовой сети электромагнита ЭМ1.
В положение З.Х контроллера через контакт 1 разъема XI напряжение от бортовой сети через резистор R103 подводится к эмиттеру транзистора VT14 усилителя питания электромагнита ЭМз.х- Кроме того, напряжение через диод VD41, резистор R70 и стабилитрон VD21 подводится к базе транзистора VT8, что обеспечивает его открытие. В результате включается транзистор VT14 и подключает электромагнит ЗМз.х к бортовой сети.
Для защиты ГМП от недопустимого включения первой передачи или передачи заднего хода в случае движения автобуса со скоростями, выше заданных, используется транзистор VT7, входящий в БП. При движении автобуса с большой скоростью на выходе усилителя DA1 создается высокий уровень напряжения. Это обеспечивает включение транзистора VT7 и тем самым предотвращается возможность включения транзистора VT8 в случае ошибочной установки контроллера управления в положение 1 или З.Х. Разрешение на принудительное включение первой передачи и передачи заднего хода поступает лишь после того, как вследствие снижения скорости автобуса усилитель DA1 переключается в состояние с низким уровнем напряжения на его выходе.
При установке контроллера управления в положение З.Х напряжение от вывода 1 разъема XI подводится к резистору R1. Это обеспечивает открытие транзистора VT1, благодаря чему уменьшается сила тока, проходящего через инвертирующий вход усилителя DA1. В результате переключение усилителя DA1 в режим высокого уровня напряжения на его выходе будет происходить при более низкой скорости автобуса, чем при установке контроллера в положение 1. Поэтому включение передачи заднего хода оказывается возможным при меньшей скорости автобуса по сравнению с допустимой для включения первой передачи.
Система защиты предохраняет ГМП от включения первой передачи или передачи заднего хода, если они до этого не были включены. Однако в тех случаях, когда та или другая из этих передач уже была включена, то независимо от скорости движения автобуса они не будут выключаться. Это достигается за счет действия транзистора VT5 (см. рис. 72), который открывается, как только происходит включение передачи заднего хода или первой передачи. В результате к базе транзистора VT5 подводится напряжение (через резистор R80 от коллектора транзистора VT15 или через резистор R78 от коллектора транзистора VT14). Открытый транзистор VT5 независимо от уровня напряжения на выходе усилителя DA1 обеспечивает отсутствие напряжения на базе транзистора VT7. Поэтому транзистор VT7 оказывается закрытым и не будет препятствовать включению транзистора VT8.
Узел защиты (УЗ). Ошибочная подача команды на одновременное включение двух и более электромагнитов может иметь место при неисправностях элементов управления выходными усилителями электронного блока или в случае пробоя транзисторов этих усилителей, вследствие чего они становятся неуправляемыми.
Для того чтобы исключить аварийное включение ГМП при любой из указанных неисправностей, в системе управления используется специальное электромагнитное реле защиты. Контакты реле размыкаются и отключают усилители питания электромагнитов от бортовой сети при поступлении от системы управления команды на срабатывание защиты.
Основным управляющим элементом устройства защиты является операционный усилитель DA6 (интегральная микросхема К553УД2).
К инвертирующему входу 4 усилителя (см. рис. 72) через резистор R28 подводится постоянное напряжение от делителя напряжения, образованного резисторами R22 и R23.
Неинвертирующий вход 5 усилителя через резисторы R5, R6, R12, R13 и разделительные диоды VD1, VD2, VD3 и VD4 соединен с коллекторами выходных транзисторов БУ. Кроме того, к входу 5 усилителя подводится напряжение от средней точки делителя напряжения, образованного резисторами R17 и R18. Номиналы указанных резисторов выбраны таким образом, что при включении одного (любого) из выходных усилителей питания электромагнитов напряжение на инвертирующем входе 4 усилителя DA6 превышает напряжение на его неинвертирующем входе 5. В этом случае напряжение на выходе усилителя DA6 имеет низкий уровень, недостаточный для открытия транзистора VT3. В результате обеспечивается открытие транзистора VT4 с подключением к бортовой сети обмотки КА1 реле защиты. При срабатывании этого реле замыкаются его нормально разомкнутые контакты KA1.1, благодаря чему через них подводится напряжение от бортовой сети к эмиттерам выходных транзисторов БУ. В случае же одновременного (непредусмотренного) включения двух и более выходных усилителей к неивертирующему входу 5 усилителя DA6 подводится напряжение, которое превышает напряжение, подводимое к его инвертирующему входу 4. Это приводит к появлению напряжения высокого уровня на выходе усилителя, следствием чего является открытие транзистора VT3 и закрытие транзистора VT4 с отключением от бортовой сети обмотки КА1 реле защиты. В результате происходит выключение реле с разрывом его размыкающих контактов и отключением БУ от бортовой сети. За счет замыкания при этом замыкающих контактов KALI реле включается цепь питания лампы индикации срабатывания защиты. Через резистор R68 и диод VD19 подается напряжение на базу транзистора VT7, открытие которого обеспечивает выключение транзистора VT8, благодаря чему в случае непредусмотренного схемой включения двух выходных усилителей исключается возможность принудительного включения как первой передачи, так и передачи заднего хода. Как только на выходе усилителя DA6 появляется напряжение высокого уровня, оно через диод VD11 и резистор R38 подводится к входу 5 усилителя. Это обеспечивает повышение напряжения на неинвертирующем входе 5 усилителя до значения, которое превышает напряжение на инвертирующем входе 4 усилителя даже при условии выключения всех усилителей питания электромагнитов.
Под действием в усилителе DA6 положительной обратной связи защита не отключается и после того, как в результате ее срабатывания выключаются все усилители питания и электромагнитов. Для отключения защиты водитель должен сначала перевести контроллер в положение Я, а затем вновь установить его в требуемое положение.
Устройство защиты от непредусмотренного включения низших передач при отказе датчика скорости является ответственным элементом электронной системы управления ГМП, так как отказ датчика скорости воспринимается системой, как остановка автобуса. В результате этого должна последовать команда на включение первой передачи, что при движении автобуса с высокой скоростью может привести к созданию аварийной ситуации.
Принцип действия рассматриваемой защиты основан на контроле сопротивления обмотки датчика скорости. В состав устройства защиты входят токоразностные усилители DA4, DA5, резисторы R55 — R63 и диоды VD17, VD18 (см. рис. 72).
Особенности работы такого устройства защиты были изложены выше. В случае отказа датчика скорости на выходе усилителя DA4 или DA5 появляется напряжение высокого уровня. Это напряжение через резистор R47 подводится к базе транзистора VT3, что приводит к его открытию и закрытию транзистора VT4 с разрывом цепи питания обмотки КА1 реле защиты. В результате выключается реле, что обеспечивает отключение всех электромагнитов системы управления ГМП от бортовой сети автобуса.
В случае отказа порогового устройства на его выходе независимо от скорости движения автобуса может появиться сигнал, соответствующий либо уровню «логического О» или уровню «логической 1». Непредусмотренное при этом появление напряжения с уровнем «логической 1» на любом из выходов дешифратора не является опасным для эксплуатации автобуса, поскольку в таком случае может лишь произойти самопроизвольное переключение на высшую передачу. Значительно опаснее случаи непредусмотренного уменьшения напряжения на выходе дешифратора до уровня «логического О», поскольку в результате этого может быть выработана команда на самопроизвольное включение низших передач.
В рассматриваемой системе управления использование в качестве узла логики дешифратора DD1 позволило уменьшить опасность такого непредусмотренного включения низших передач.
Если во время движения автобуса с высокой скоростью вследствие отказа усилителей DA1 или DA2 напряжение на входе 1 или 2 дешифратора снижается до уровня «логического О», то это приводит к появлению непредусмотренной комбинации сигналов на входе дешифратора (табл. 20). В результате отключаются от массы выходы 0, 1, 3 и 7 дешифратора, которые подключают цепи питания всех выходных усилителей. Тем самым предотвращается самопроизвольное аварийное включение низших передач. С целью предотвращения переключения ГМП в нейтральное положение, что в ряде случаев нежелательно с точки зрения безопасности эксплуатации автобуса, в схеме управления выполнено соединение между собой выходов 2 — 6 дешифратора, благодаря чему при любой непредусмотренной комбинации сигналов на входе дешифратора во время движения автобуса с высокой скоростью обеспечивается включение третьей передачи.
22. Порядок переключения передач при отказе усилителей пороговых устройств
Скорость автобуса |
Номер входа дешифратора |
Номер выхода, соединенного с массой |
Передача |
||
1 |
2 |
4 |
|||
Усилители исправны |
|||||
0-VI-II |
0 |
0 |
0 |
0 |
Первая |
VI-II — VII-III |
1 |
0 |
0 |
1 |
Вторая |
VII-III-VIII-(III+Бл)* |
1 |
1 |
0 |
3 |
Третья |
Более VIII-(III+Бл) |
1 |
1 |
1 |
7 |
Третья** |
Отказ усилителя DA1 |
|||||
0—VI-II |
0 |
0 |
0 |
0 |
Первая |
VI-II — VII-III |
0 |
0 |
0 |
0 |
» |
VII-III —VIII-(III+Бл) Более VIII-(III+Бл) |
0 0 |
1 1 |
0 1 |
2 6 |
Третья » |
Отказ усилителя DA2 |
|||||
0-VI-II |
0 |
0 |
0 |
0 |
Первая |
VI-II — VII-III |
1 |
0 |
0 |
1 |
Вторая |
VII-III —VIII-(III+Бл) |
1 |
0 |
0 |
1 |
» |
Более VIII—(III+БЛ) |
1 |
0 |
1 |
5 |
Третья |
Отказ усилителей DA1 и DA2 |
|||||
0—VI-II |
0 |
0 |
0 |
0 |
Первая |
VI—II —VII-III |
0 |
0 |
0 |
0 |
» |
VII-III —VIII-(III+Бл) Более VIII-(III+Бл) |
0 0 |
0 0 |
0 1 |
0 1 |
» Третья |
* VIII-(III+Бл) — скорость, соответствующая вклкечению блокировки гидротрансформатора .
** С режимом блокировки гидротрансформатора.
В табл. 22 приведен порядок переключения передач при различных скоростях движения автобуса для любых вариантов отказов усилителей DA1 и DA2. Анализ данных показывает, что в случае отказа одного из этих усилителей в зоне средних и низких скоростей движения в худшем случае произойдет переключение «вниз» только на одну передачу.
Лишь в случае одновременного отказа обоих усилителей, что мало вероятно, в диапазоне скоростей VII-III-VIII-(III+Бл) возможно переключение «вниз» на две передачи, а в остальных диапазонах скоростей может иметь место переключение «вниз» только на одну передачу.
Следует отметить, что при незначительном усложнении схемы возможно предотвратить переключение «вниз» на две передачи в случае отказа обоих усилителей. Для этого достаточно соединить выход усилителя DA2 с инвертирующим входом усилителя DA3 (через резистор R52 и диод VD15, как это показано штриховой линией на рис. 72). Благодаря такому подключению в случае отказа усилителя DA2 переход усилителя DA3 в режим с высоким уровнем выходного напряжения произойдет при более низкой скорости автобуса, т. е. наиболее опасная комбинация на входах дешифратора (000) сместится в зону меньших скоростей движения автобуса.
МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ
Микропроцессорные системы управления в последнее воемя все чаще используют для управления ГМЛ автобусов, грузовых и легковых автомобилей. Система управления фирмы «Аллисон» с условным обозначением АТЕС предназначена для управления трех- пятиступенчатыми ГМП, оборудованными блоком электромагнитных клапанов (ЭМ ГМП). С помощью этих клапанов осуществляется управление исполнительными устройствами (фрикционами) ГМП. Система АТЕС (рис. 75) является многофункциональной системой управления. В зависимости от сигналов, поступающих от датчика скорости ДС, контролирующего скорость автомобиля, и датчика нагрузки ДН двигателя, микропроцессор в соответствии с заложенной в него программой и с учетом положения контроллера управления KУ вырабатывает команды на переключение передач и блокировку гидротрансформатора. Эти сигналы усиливаются силовыми элементами системы управления и далее поступают к электромагнитам привода соответствующих гидравлических клапанов. Исполнительными устрой- ствами ГМП являются фрикционы, включением и выключением которых управляют указанные гидравлические клапаны.
Рис. 75. Структурная схема микропроцессорной системы управления ГМП грузовых автомобилей
Кроме выработки сигналов на переключение передач система управления осуществляет ряд функций защиты передачи от аварийных режимов, а также используется для диагностирования состояния узлов ГМП по сигналам датчиков температуры масла ДТ и давления в системе ДР.
ГМП является сложным и дорогостоящим агрегатом, поэтому своевременная сигнализация о возможных ее неисправностях позволяет существенно повысить эксплуатационную надежность ГМП. Система может быть применена для управления трансмиссиями различного типа благодаря тому, что корректировка алгоритма управления применительно к различным типам трансмиссий требует лишь изменения программы, записываемой в ППЗУ, т. е. сама система не претерпевает никаких конструктивных изменений.
Рис. 76. Структурная схема микропроцессорной системы управления ГМП
Использование микропроцессорной системы управления ГМП обеспечивает переключение передач при скоростях движения автомобиля, отличающихся не более чем на 1 % от их оптимальных значений. При применении гидравлической системы управления допуск скоростей, соответствующих переключению передач, составляет 5 — 10%.
Сравнительные испытания ГМП с гидравлической и микропроцессорной системами управления показали, что применение последней позволяет экономить до 7 — 8 % топлива.
Система управления АТЕС выполняет следующие защитные функции:
предотвращает возможность включения передачи заднего хода при скорости движения выше установленного предела;
запрещает переключений передач в случае пробуксовывания или блокировки колес автомобиля при торможении, благодаря чему исключается ошибочное действие системы управления;
предотвращает чрезмерное увеличение частоты вращения коленчатого вала при спуске с горы с включенным замедлителем.
Рис. 77. Электронный блок микропроцессорной системы управления ГМП и электромагнитные клапаны
Кроме того, система управления,- будучи связанной с встроенными устройствами диагностирования, не только сигнализирует водителю о наличии каких-либо неисправностей или отклонении показателей ГМП от нормы (перегрев масла или недопустимое изменение давления в гидросистеме), но и записывает в памяти эти данные для последующего анализа причин появления неисправностей.
Микропроцессорная система управления для четырехступенча той планетарной ГМП типа 4НР22 [39] предназначена для применения в легковых автомобилях (БВМ) большого класса. Структурная схема ее представлена на рис. 76, а электронный блок на рис. 77.
Режим автоматического переключения передач реализуется при установке контроллера управления KУ в положение D. При этом в зависимости от положения избирателя программ, заранее устанавливаемого водителем в то или иное положение, обеспечивается переключение передач по программе е, соответствующей наилучшей топливной экономичности или по программе s, позволяющей реализовать наивысшие динамические показатели автомобиля.
При переключении передач по программе s четвертая передача не включается. Данный режим переключения используют при эксплуатации автомобиля в горных условиях или при движении с прицепом.
Установка избирателя программ в положение ру (ручное уп-авление) обеспечивает отключение автоматики, что позволяет водителю с помощью контроллера управления принудительно включать первую — третью передачи переднего хода, а также передачу заднего хода (см. рис. 76, положение R). Положение Р контроллера используется для механического соединения ведущего вала 1МП с картером для обеспечения затормаживания неподвижного автомобиля во время стоянок.
Электронный блок выполняет следующие функции управления:
вырабатывает команды на переключение ступеней передачи и блокировку гидротрансформатора в зависимости от скорости автомобиля и нагрузки двигателя путем подключения к источнику электропитания электромагнитов ЭМ ГМП привода гидравлических клапанов управления тормозами ГМП;
воздействует на электронную систему зажигания двигателя для уменьшения крутящего момента двигателя, что позволяет снизить нагрузки в трансмиссии автомобиля и увеличить плавность процесса переключения в период переключения передач. Тем самым обеспечивается уменьшение работы буксования фрикционных элементов системы управления ГМП;
осуществляет регулирование давления в гидросистеме ГМП с учетом режима ее работы путем воздействия на электромагнит ЭЛ1рД системы регулирования давления, что позволяет снизить потери в ГМП, и благоприятно влияет на плавность процесса переключения передач:
корректирует режимы переключения в зависимости от теплового режима двигателя благодаря подключению электронного блока к датчику температуры ДТ;
обеспечивает режим переключения передач, соответствующий максимальному использованию мощности двигателя, при подаче сигнала от выключателя кикдаун 5К — Д;
защищает передачу от аварийных режимов в случае неправильных действий водителя или отказа элементов системы управления. В частности, система защиты предотвращает возможность ошибочного включения передачи заднего хода при движении автомобиля вперед со скоростью выше заданной. Также исключается возможность переключения с третьей на вторую и со второй на первую передачу при скоростях движения, превышающих их заданные максимальные значения.
Рис. 78. Структурная схема микропроцессорной системы управления ГМП легковых автомобилей
В случае отключения системы управления от источника питания осуществляется автоматическое включение третьей передачи (с помощью подпружиненного гидравлического клапана-).
Микропроцессорная система применяется для управления трехступенчатыми планетарными ГМП легковых автомобилей «Рено» мод. R9S, 18i и «Фуэго» [36, 40].
В зависимости от положения рычага контроллера управления KУ (рис. 78) сигналы от него через интерфейс поступают в микропроцессор МП, что обеспечивает следующие режимы работы ГМП: автоматическое переключение всех трех передач (положение D контроллера), автоматическое переключение первой и второй передач (положение 2), принудительное включение первой передачи (положение 1), передачи заднего хода (положение R), установка в нейтраль (положение N) и блокировка передачи (положение Р).
Переключением передач при установке контроллера в положения D, 2 и 1 управляют два клапана с электромагнитным приводом (ЭМ1 и ЭМ2). Порядок включения этих клапанов на различных передачах приведен ниже (знаком + отмечено подключение электромагнитов их привода к источнику питания).
Положение контроллера ......... |
D |
D |
D |
D |
2 |
2 |
1 |
Передача ...... |
Первая |
Вторая |
(Вторая — третья) |
Третья |
Первая |
Вторая |
Первая |
Включение электромагнитов: |
|||||||
ЭМ1 ........ ЭМ2 ........ |
— + |
+ + |
(+) (—) |
— — |
— + |
+ + |
— + |
При отключении электромагнитов от источника питания в случае установки контроллера в положения 1, 2 и D включается третья передача, а установка контроллера в положения R, N и Р обеспечивает включение соответственно передачи заднего хода, нейтрали и режима блокировки передач.
Структурная схема рассматриваемой микропроцессорной системы управления представлена на рис. 78. Основным элементом ее электронного блока ЭБ является микропроцессор типа 80А22, в состав которого входят собственно микропроцессор, счетчик, генератор, ОЗУ с памятью объемом 64 слова, ПЗУ с памятью объемом 2048 слов, 28 линий ввод-вывод, из которых две идут от входящего в состав микропроцессора аналого-цифрового преобразователя и еще две рассчитаны на выходной ток до 7 мА. Допустимое напряжение питания микропроцессора 4,5 — 6,5 В, рабочий температурный диапазон от — 40 до 100 С, число команд — более 70. По существу, данный микропроцессор является микроЭВМ.
Автоматическое переключение передач осуществляется в зависимости от двух параметров — скорости движения автомобиля и нагрузки двигателя. Требуемые для этой цели сигналы поступают в электронный блок через усилитель-формирователь УФ от датчика скорости ДС автомобиля индукторного типа и через фильтр — от датчика нагрузки ДН двигателя, выполненного в виде потенциометра, приводящегося от педали подачи топлива. С помощью этого потенциометра реализуется и режим кикдаун, используемый для обгонов.
Связь потенциометра с педалью управления дроссельной заслонкой выполняется таким образом, что при полностью отпущенной педали напряжение на его выходе не снижается до нуля. Наличие на выходе потенциометра напряжения не ниже определенного уровня является индикатором его исправности и используется в системе защиты ГМП от неправильного срабатывания. С учетом сигналов, получаемых от датчиков скорости автомобиля и нагрузки двигателя, в соответствии с заданной программой микропроцессор вырабатывает команды управления клапанами ЭМ1 и ЭМ2, обеспечивающие требуемые переключения передач. Для того чтобы произошло переключение со второй на третью передачу, необходимо отключить от источника питания оба клапана. Однако нельзя гарантированно обеспечить строго одновременного выключения обоих клапанов, в связи с чем возможен случай, когда клапан ЭМ1 выключится несколько раньше клапана ЭМ2. В результате какое-то время при выключенном клапане ЭМ1 клапан ЭМ2 окажется включенным. Это соответствует включению первой передачи, т. е. вместо того, чтобы произошло переключение со второй на третью передачу, будет иметь место переход со второй на первую передачу.
Для предотвращения такой возможности микропроцессорная система управления после выработки команды перехода со второй на третью передачу, задерживает на небольшой период времени выключение клапана ЭМ1, благодаря чему в период переключения возможна только комбинация в виде открытого клапана ЭМ1 и закрытого клапана ЭМ2 с последующим закрытием обоих клапанов.
Помимо выработки команд на переключение передач микропроцессорная система управляет перекрытием включения фрикционов и тормозов ГМП, обеспечивая необходимую плавность процесса переключения.
Программой, заложенной в микропроцессорную систему, предусмотрено выполнение следующих защитных функций: предотвращение непредусмотренного переключения со второй или третьей на первую передачу при отказе датчика скорости. Для решения этой задачи сигнал датчика скорости автомобиля после его поступления в микропроцессор сравнивается с пороговым сигналом, соответствующим скорости движения 3 км/ч. Если при движении автомобиля на второй или третьей передачах сигнал преобразователя оказался ниже порогового сигнала, то это свидетельствует о неисправности преобразователя, и переключение на первую передачу запрещается. Одновременно выдается сигнал неисправности на контрольную лампу;
исключение неправильного функционирования системы управления в случае отказа датчика нагрузки. Если такой отказ происходит и напряжение на выходе датчика снижается- до нуля, вместо заданного минимального его значения при исправном датчике, то система управления не принимает сигналов от датчика нагрузки и при этом включается третья передача;
контроль прохождения в микропроцессоре заданной программы. Для этой цели в конце выполнения микропроцессором отдельных участков программы выдается короткий импульс, который запускает одновибратор. Сигнал, вырабатываемый одновиб-ратором, более продолжительный, чем период выполнения участка программы между двумя соседними импульсами. Благодаря этому при нормальном функционировании микропроцессора на выходе одновибратора все время поддерживается высокий уровень сигнала. Если же в работе микропроцессора происходят остановки или «зацикливание», то на выходе одновибратора появляется напряжение низкого уровня, что является сигналом неисправности. Этот элемент защиты, имеющий обозначение «Контроль МП» (см. рис. 78) обеспечивает отключение усилителей Уэм питания электромагнитов клапанов;
проверка правильности прохождения команд через усилители уэм питания электромагнитов клапанов сопоставлением сигналов на входах и выходах усилителей. При несоответствии этих сигналов микропроцессор вырабатывает команду на выключение усилителей. Блок защиты Б3пер
предотвращает ошибочные переключения во время переходных процессов в системе.
Помимо выполнения защитных операций микропроцессор все обнаруженные неисправности через усилитель диагностики Уд отображает на индикаторе диагностики, сигнализируя о них водителю. Кроме того, код этих неисправностей записывается в память микропроцессора и сохраняется в ней до тех пор, пока к микропроцессору подведено напряжение питания.
Микропроцессорные системы управления ГМП, так же как и электронные системы управления с «жесткой» логикой, осуществляют переключение передач по одинаковому принципу, то есть в зависимости от двух параметров — скорости автомобиля и нагрузки двигателя. Особенность применения микропроцессорных систем включается в том, что с их помощью наилучшим образом могут быть решены задачи регулирования давления в гидросистеме, диагностирования состояния узлов ГМП, вопросы защиты передачи от аварийных режимов, а также вспомогательные информационные задачи (с помощью цифровых спидометров, тахометров и т. д.). Микропроцессорные системы могут быть использованы и для регулирования темпа включения фрикционов ГМП с целью обеспечения высокой плавности движения автомобиля во время переключения передач.
АНТИБЛОКИРОВОЧНЫЕ ТОРМОЗНЫЕ СИСТЕМЫ
Из теории автомобиля известно, что качение колеса в процессе его затормаживания может происходить только в том случае, когда тормозной момент, прикладываемый к колесу, уравновешивается реактивным моментом, равным произведению нормальной нагрузки Pz, действующей на колесо, на продольный коэффициент его сцепления с дорогой фп. Величина коэффициента сцепления фп зависит как от состояния дорожного покрытия, так и от величины проскальзывания колеса по отношению к покрытию. Величину проскальзывания колеса оценивают безразмерным коэффициентом
s = (va — vт)/va,
где va — скорость автомобиля; Vт
— скорость колеса в точке его соприкосновения с дорожным покрытием.
При увеличении s от нуля до определенной величины SKp (рис. 79) происходит увеличение коэффициента фп. В диапазоне значений s = sKp-:-l по мере увеличения значения s коэффициент фд уменьшается. Вследствие этого если тормозной момент MТ, прикладываемый к колесу, не превысит значения Р2фпmах, то в процессе торможения автомобиля будет иметь место качение колеса при одновременном его проскальзывании. Величина этого проскальзывания установится именно такой, какая необходима для получения коэффициента фпт» определяемого выражением фпт = MT/PZ.
Если же момент Мг окажется больше произведения P2фпmах, то даже при значении s=skp реактивный момент не сможет уравновесить тормозной момент. В результате этого скольжение s превысит значение skp, что повлечет за собой дальнейшее уменьшение коэффициента фп и в конечном итоге вызовет блокировку колеса.
Поскольку при s=l коэффициент фп значительно меньше значения фптах, тормозные качества автомобиля при блокировке колес существенно ухудшаются. Блокировка колес автомобиля крайне нежелательна еще и потому, что в этом случае происходит резкое уменьшение поперечного (бокового) коэффициента сцепления фб колеса с дорогой, как это показано на рис. 79. В результате могут быть потеряны устойчивость и управляемость автомобиля.
Рис. 79. Зависимость продольного фп и поперечного фб коэффициентов сцепления автомобильного колеса от величины его проскальзывания s:
------ сухая дорога;
- - - - скользкая дорога
Очевидно, что названные опасные последствия могут иметь место в случае торможения автомобиля при низких значениях коэффициентов сцепления Фп и Фб. Поэтому основной задачей антиблокировочных тормозных систем является поддержание в процессе торможения автомобиля такого тормозного момента, который при данном состоянии дорожного покрытия исключит -возможность блокировки колес и обеспечит максимально возможный эффект торможения.
Для решения данной задачи антйблокировочная система (АБС) должна в зависимости от характера изменения частоты вращения затормаживаемых колес автоматически изменять давление в цилиндрах или тормозных камерах исполнительных тормозных механизмов. При этом необходимо обеспечить высокое быстродействие регулирования давления, для чего используют быстродействующие клапанные устройства с электромагнитным приводом (так называемые модуляторы давления).
Многолетний опыт разработки и исследования антиблокировочных устройств показал, что очень жесткие требования, предъявляемые к этим устройствам, могут быть удовлетворены только при условии применения электронных систем управления. В настоящее время уже серийно выпускается ряд электронных антиблокировочных тормозных систем на базе как электронных блоков с жесткой логикой, так и микропроцессорных комплектов. Они предназначены для автомобилей, имеющих гидравлический и пневматический привод тормозных механизмов, причем может быть обеспечено индивидуальное управление процессом торможения каждого из колес и одновременное воздействие на несколько затормаживаемых колес.
Рис. 80. Структурная схема электронной антиблокировочной системы управления тормозами
Рассмотрим принцип действия различных АБС [6, 11, 22]. Следует отметить, что для обеспечения нормального функционирования системы она должна непрерывно сравнивать скорость автомобиля и частоту вращения затормаживаемого колеса.
Основная трудность решения этой задачи связана с отсутствием надежных и простых прямых методов определения скорости автомобиля, т. е. методов, не связанных с измерением частоты вращения его колес. Поэтому для оценки скорости автомобиля в АБС используют те или иные косвенные методы, в основном основанные на запоминании частоты вращения колес в определенные периоды времени. Способ решения данной задачи и последующая обработка получаемого сигнала являются факторами, существенно влияющими на алгоритм АБС.
Известно очень большое число самых различных алгоритмов АБС, каждый из которых имеет свои преимущества и недостатки. Однако по большинству показателей в настоящее время предпочтение отдается алгоритмам, основанным на сопоставлении реальной частоты вращения колеса и так называемой опорной частоты вращения, рассчитываемой в каждый момент времени системой управления [22].
В большинстве современных АБС изменение давления в исполнительных устройствах тормозных систем организовано по трехфазовому циклу. При таком цикле наряду с процессами увеличения или уменьшения давления в цилиндрах (или камерах) тормозного привода предусмотрена также фаза (называемая «отсечкой») поддержания в них постоянного давления. В течение этой фазы рабочая полость цилиндров (или тормозных камер) отсоединена как от источника давления, так и от атмосферы (при пневмоприводе тормозных механизмов) или от полости слива (при гидроприводе тормозных механизмов).
Благодаря высокой чувствительности системы управления процесс поддержания ею требуемого тормозного усилия обеспечивается за счет непрерывного повторения циклов регулирования давления. Частота следования этих циклов составляет 5 — 10 Гц. При этих условиях наличие фазы «отсечки» позволяет существенно уменьшить расход сжатого воздуха или снизить подачу гидронасоса.
На первом этапе применения АБС выявились их серьезные недостатки, основной из которых — недостаточная надежность [38]. В результате последующей доработки АБС эти недостатки были устранены, и в настоящее время антиблокировочные системы получают все большее распространение. Однако ввиду относительно высокой стоимости этих систем они в основном используются на магистральных многоосных автопоездах. Для легковых автомобилей массового производства АБС пока что являются слишком дорогим оборудованием.
Рис. 81. Изменение скорости vа, w и дw/dt и давления Р при работе антиблокировочной системы:
1 — частота вращения колеса, пропорциональная скорости автомобиля; 2 — частота вращения колеса при «идеальном» режиме торможения; 3 — фактическая частота вращения колеса
В качестве примера реализа ции АБС на базе аналоговой схемотехники рассмотрим принцип действия системы такого типа, разработанной для автомобилей с пневмоприводом тормозных механизмов. Система управления действует по трехфазному циклу, а ее алгоритм основан на сопоставлении . «опорного» сигнала с сигналом, определяющим фактическую частоту вращения затормаживаемого колеса (А. с. 553142, СССР, МК№ В 60 Т 8/08). Рассмотрим принцип действия системы управления (рис. 80). Будем считать, что торможение автомобиля происходит на скользкой дороге, вследствие чего в процессе торможения частота вращения затормаживаемого колеса снижается быстрее, чем уменьшается скорость автомобиля иа
(рис. 81). На рис. 81 t{ — время начала торможения, a tz — время, при котором разность сигналов, определяемых кривыми 1 и 5, достигнет заданной величины. В момент времени tz тормозная камера отключается от источника давления и одновременно соединяется с атмосферой, что обеспечивает перевод системы регулирования в фазу «сброс» давления. Падение давления Р будет продолжаться до тех пор, пока вследствие уменьшения тормозного момента не прекратится замедление колеса.
В этот момент времени (t=t3) произойдет изменение знака производной dwK/dt , в результате чего выработается сигнал для прекращения снижения давления в тормозной камере путем перевода системы регулирования в режим «отсечка».
Тормозная система обладает определенной инерционностью, поэтому замедление колеса несколько отстает по времени от падения давления в тормозной камере. В результате к моменту, когда прекращается замедление колеса, давление в тормозной камере успевает снизиться в большей степени, чем это было бы необходимо в случае высокого быстродействия тормозной системы. Вследствие этого в период действия фазы «отсечка» будет иметь место разгон колеса. Когда в процессе этого Разгона при t=t4 ускорение колеса и, следовательно, производная dwK/dt достигнут максимума, это будет означать, что сцепление колеса с дорогой восстановилось, в связи с чем следует увеличить тормозной момент. Исходя из этого, система управления подает команду к переходу от фазы «отсечка» к фазе «увеличение» давления.
23. Режим работы задатчика
Состояние затормаживаемого колеса |
Режим работы ЗД |
Напряжение на входах А и Б задатчика |
UЗД |
Скорость изменения напряжения на входе эадатчика dUЗд/dt. В/с |
|
UА |
UБ |
||||
Не блокируется |
Слежение |
Н |
Н |
0,7Uпчн |
<3,5 |
Замедление |
Память |
В |
Постоянное, |
>3,5 |
|
равное U3до |
|||||
Разгон |
Перезапись |
В |
Н |
0,7 Un4H |
Любая |
После этого весь описанный процесс работы системы будет многократно повторяться, причем сигнал, определяющий частоту вращения колеса, в каждом новом цикле будет сравниваться с откорректированным для этого цикла «опорным» сигналом.
Рис. 82. Изменение давления в тормозной камере и электрических сигналов элементов антиблокировочной системы в процессе торможения автомобиля:
I — слежение; II — память; III — перепись; IV — сброс давления: V — отсечка; Uд
= — k dw/dt
В случае реализации «идеального» управления процессом торможения, во время которого поддерживалась бы постоянной величина s=sKp, характер изменения частоты вращения соответствовал бы кривой 2. Чем меньше отличаются кривые 2 и 3, тем совершеннее работа АБС.
Основным элементом АБС является задатчик ЗД «опорного» уровня скорости, с которым сопоставляется фактическая частота вращения колеса. Этот задатчик выполняет функции элемента памяти. В зависимости от сигналов, поступающих через резисторы Rl — R4 (см. рис. 80), на его входы, он работает в одном из трех режимов, указанных в табл. 23.
Приведенное в табл. 23 соотношение между напряжением Uпчн
на выходе ПЧН и напряжением Uзд на выходе задатчика, а также темп изменения напряжения Uзд в режиме слежения, исключают возможность уменьшения напряжения Uпчн
ниже значения U зд в процессе торможения автомобиля, происходящего без блокировки колес, даже при максимально возможной его эффективности (замедление до 5 м/с2). Однако если в процессе торможения автомобиля появится тенденция к блокировке колеса, то частота его вращения резко уменьшится и задатчик не успеет «отследить» изменение напряжения Uпчн. В результате этого будет иметь место соотношение Uзд>Uпчн.
Вследствие этого в момент времени tz напряжение, подводимое от выхода 4 задатчика к неинвертирующему входу 1 компара тора скорости, окажется выше напряжения, подводимого к его инвертирующему входу 2 от выхода ПЧН. В результате на выходе 3 компаратора скорости и, следовательно, на входе Б задатчика появится напряжение высокого уровня, под действием которого задат-чик перейдет в режим памяти. При этом напряжение на выходе задатчика установится равным значению Uздо, которое на рис. 82 соответствует времени tz. После появления напряжения высокого уровня на выходе 3 компаратора скорости через усилители УСб и Уотс (см. рис. 80) вырабатывается команда включения электромагнитов ЭМсб и ЗМОТС
управления модуляторами, осуществляющими сброс давления и «отсечку». В результате снижения при этом давления Р в тормозной камере (см. рис. 82) уменьшится замедление колеса и, как следствие, снизится уровень положительного напряжения Uд на выходе дифференциатора. Когда замедление колеса прекратится и начнется его разгон, напряжение Uд изменит свой знак, т. е. станет отрицательным. В результате этого будет приведен в действие элемент Этах
обнаружения максимума ускорения (см. рис. 80).
Этот элемент выполнен таким образом, что напряжение на его выходе имеет высокий уровень только при одновременном соблюдении двух условий:
напряжение на входе элемента должно быть отрицательным;
уровень отрицательного напряжения на сигнальном входе 1 элемента должен не меняться или возрастать. В случае же его уменьшения напряжение на выходе 4 элемента падает до низкого уровня.
Для четкой фиксации момента изменения полярности напряжения на выходе дифференциатора используется пороговое устройство ПУ дифференциатора, которое преобразует плавно изменяющееся выходное напряжение дифференциатора в сигнал цпу прямоугольной формы (см. рис. 82, штриховая линия). Данный сигнал подводится к блокирующему входу 2 элемента обнаружения максимума (см. рис. 80), благодаря чему появление высокого уровня напряжения на выходе 4 этого элемента может иметь место только в периоды, когда напряжение на выходе порогового устройства ПУ имеет отрицательную полярность, т. е. в периоды разгона колеса.
Соединение сигнального входа 1 элемента обнаружения максимума с выходом дифференциатора обеспечивает получение напряжения высокого уровня на выходе элемента только в периоды, когда имеет место увеличение ускорения колеса. На рис. 81 этот период соответствует интервалу времени, ограниченному точками t3
и t4, а на рис. 82 — участкам, ограниченным точками t3 — t4, t6 — t7, t9 — t10.
За счет соединения выхода элемента обнаружения максимума с входом А задатчика (см. рис. 80) одновременно с появлением высокого уровня напряжения на выходе 4 элемента такое же напряжение подводится к входу А задатчика. Вследствие этого за-датчик переводится в режим «перепись».
Кроме того, благодаря соединению выхода элемента обнаружения максимума с инвертирующим входом 2 компаратора скорости обеспечивается перевод этого компаратора в режим с низким уровнем выходного напряжения.
Последнее приводит к выключению усилителя Усб электромагнита ЭМС6 модулятора, управляющего выпуском воздуха из тормозной сервокамеры, т. е. прекращению «сброса» давления. Но электромагнит ЭМОТС модулятора «отсечки» при этом продолжает оставаться включенным, поскольку к входу его усилителя подводится напряжение высокого уровня от выхода элемента обнаружения максимума.
Отключение электромагнита ЭМОТС модулятора «отсечки» от источника питания происходит лишь после того, как вследствие уменьшения ускорения колеса (точки t4, t7, t10) напряжение Uд на выходе дифференциатора начинает уменьшаться (см. рис. 82), что приводит к уменьшению до нуля напряжения на выходе элемента обнаружения максимума.
Далее весь цикл регулирования давления в тормозной системе многократно повторяется.
Опорным сигналом для системы управления является напряжение Uздо, фиксируемое на выходе задатчика в периоды «памяти». В каждом новом цикле работы системы уровень запоминаемого напряжения Uздо уменьшается по сравнению с его уровнем в предшествующем цикле. Иными словами, «опорный» сигнал фиксируемый в точках t2, t5, U, все время изменяется соответственно скорости движения автомобиля, что и требуется для функционирования системы управления.
Если в процессе торможения автомобиля на скользкой дороге имеет место особо интенсивное снижение частоты вращения колеса, то это вызывает соответствующее увеличение напряжения положительной полярности на выходе дифференциатора. Подключение выхода дифференциатора к неинвертирующему входу 1 компаратора скорости приводит к повышению уровня напряжения на данном входе компаратора, вследствие чего напряжение высокого уровня на его выходе появляется раньше, чем вследствие замедления колеса напряжение на выходе ПЧН снизится до 70 % его первоначальной величины.
Благодаря этому сигнал на «сброс» давления будет выдан с опережением, что и требуется для повышения эффективности действия АБС.
Выход компаратора скорости соединен с входом 3 элемента обнаружения максимума (см. рис. 80). Особенность этой связи заключается в том, что при наличии напряжения на входе 3 элемента приводится в действие его блок запоминания данного напряжения, которое является разрешающим для действия элемента. Это запоминание является относительно непродолжительным, поэтому для создания возможности появления напряжения высокого уровня на выходе элемента обнаружения максимума (при наличии соответствующего уровня напряжения на его сигнальном входе 1) необходимо, чтобы периодически к его разрешающему входу 3 подводилось напряжение от выхода компаратора скорости.
Данное условие окажется выполненным при торможении автомобиля на скользкой дороге, когда вследствие резкого уменьшения частоты вращения колес будет иметь место включение компаратора скорости с появлением на его выходе напряжения высокого уровня (в периоды «памяти»).
По-иному действует система управления в случае, например, движения автомобиля на спуске с увеличением его скорости. При этом водитель может начать подтормаживать автомобиль путем включения тормозов.
В процессе разгона автомобиля дифференциатор вырабатывает напряжение отрицательной полярности, которое является сигналом для включения элемента обнаружения максимума. Если при этом не предотвратить включение данного элемента, то будет реализован режим «отсечка», т. е. самопроизвольно прекратится торможение автомобиля, что совершенно недопустимо.
Рис. 83. Изменение угловой скорости W1,2 и W3, скорости иа, давлений Р1,2
и Ра при работе антиблокировочной системы тягача
Такое действие АБС, однако, оказывается невозможным, поскольку в процессе разгона автомобиля Uпчн>UЗД, т. е. компаратор скорости не срабатывает и вследствие этого напряжение к разрешающему входу 3 элемента обнаружения максимума не подводится.
Очень важным элементом АБС является блок контроля ее исправности. В его задачу входит автоматическое выключение электромагнитов модуляторов сброса и отсечки при появлении неисправности в системе управления. Одновременно должна быть приведена в действие сигнализация, оповещающая водителя о наличии неисправности в АБС.
На входы блока контроля подается напряжение от выходов ПЧН и задатчика. Сигналом неисправности АБС являются нарушение нормального соотношения между Uпчн
и Uзд в течение периода времени более 1 с.
В этом случае на выходе блока контроля, во-первых, вырабатываются команды выключения усилителей управления модулято-рами «сброса» и отсечки и, во-вторых, подается команда на включение сигнализатора отказа АБС (например, аварийной лампы).
В последнее время появилось большое число сообщений о создании и серийном производстве различных антиблокировочных тормозных систем на базе микропроцессорных комплектов. Такой путь создания антиблокировочных систем является вполне оправданным, поскольку применение микропроцессоров позволяет наилучшим образом осуществлять оптимальное управление тормозами с учетом большого числа факторов, влияющих на процесс торможения автомобилей [11].
Можно, правда, отметить, что микропроцессорные АБС ввиду относительно высокой их стоимости пока что в основном применяются на большегрузных автомобилях и тягачах.
В качестве примера такого применения можно указать на микропроцессорную АБС, которой оборудуются трехосные полуприцепы большой грузоподъемности с пневмоприводом тормозных механизмов. Эта система содержит два канала управления тормозными механизмами, один из которых используется для регулирования давления P1,2 в тормозных камерах первой и второй осей, а второй канал осуществляет регулирование давления Р3 в камерах третьей оси.
Сравнение характеристик изменения угловой скорости wK1,2 и wкз колес первой, второй и третьей осей и скорости автомобиля va (рис. 83) показывает, что применение АБС обеспечивает незначительное расхождение между ними в процессе торможения. Это свидетельствует об эффективности действия АБС.
У автомобилей, содержащих АБС, при выходе из строя тормозных систем сохраняется обычный привод тормозных механизмов. Опыт эксплуатации автомобилей с АБС показал, что при наличии такой системы у водителя вырабатываются новые навыки управления процессом торможения. Поэтому в случае внезапного отказа АБС водитель может не обеспечить необходимой эффективности торможения автомобиля. Вследствие этого к надежности АБС и в том числе к надежности электронного блока предъявляют особо жесткие требования.
Это особенно важно для микропроцессорных АБС. При разработке схемотехники электронных блоков таких систем принимают специальные меры для предупреждения сбоев в их работе. Достигают этого как вследствие аппаратурного обеспечения, так и применением специальных -помехоустойчивых программ. Данные решения частично напоминают схемотехнику элементов защиты от неправильного функционирования микропроцессорных систем управления ГМП.
ЭЛЕМЕНТНАЯ БАЗА ЭЛЕКТРОННЫХ СИСТЕМ
Основными комплектующими элементами для автомобильной электронной аппаратуры являются резисторы, конденсаторы, полупроводниковые диоды, транзисторы и интегральные микросхемы. Номенклатура указанных изделий, выпускаемых промышленностью, весьма широка. При этом элементы различных типов по ряду характеристик незначительно отличаются один от другого, в связи с чем разработчик электронной аппаратуры имеет возможность выбора того или иного типа комплектующего элемента с требуемыми номинальными данными. Такая возможность создает опасность, ао-первых, неудачного выбора типа элемента применительно к требуемым условиям работы автомобильной электронной аппаратуры и, во-вторых, излишнего расширения номенклатуры применяемых изделий.
При выборе комплектующих элементов учитывают следующие основные требования, предъявляемые к ним:
они должны относиться к числу серийно выпускаемых изделий;
их характеристики должны оставаться стабильными в заданных климатических условиях (диапазон рабочих температур, влажность, давление и др.);
они должны обеспечивать работоспособность электронных устройств в условиях воздействия на них помех в цепях питания и электромагнитных, в том числе полевых помех;
их масса и размеры должны быть минимальными при обеспечении высокой их надежности и длительного срока службы.
МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ
Рассмотрим микропроцессорную систему, разработанную для легкового автомобиля «Фиат — Панда 30». Исполнительным механизмом системы (рис. 64) является вакуумная сервокамера 20, шток 21 которой через рычаг 22 воздействует на выжимной подшипник 4 сцепления 5. Источником разрежения для вакуумной сервокамеры является впускной коллектор 7 двигателя, соединенный через.обратный клапан 13 с вакуумным ресивером 14.
Рис. 64. Схема размещения элементов микропроцессорной системы управления сцеплением:
1 — коробка передач; 2 — датчик частоты вращения ведомого элемента сцепления; 3 — вал ведомого элемента сцепления; 4 — выжимной подшипник; 5 — сцепление; 6 — датчик частоты вращения коленчатого вала; 7 — впускной коллектор двигателя; 8 — датчик положения дроссельной заслонки; 9 — двигатель; 10 — выключатель рычага переключения передач; 11 — электронный блок управления; 12 — рычаг переключения передач; 13 — обратный клапан; 14 — вакуумный ресивер; 15 — клапан соединения сервокамеры с ресивером; 16 и 18 — электромагниты; 17 — клапан соединения сервокамеры с атмосферой; 19 — полость регулируемого давления сервокамеры; 20 — сервокамера; 21 — шток сервокамеры; 22 — рычаг; 23 — ведомый вал коробки передач; 24 — датчик частоты вращения ведомого вала коробки передач
Рис. 65. Зависимость Mc = f(L)
При подключении к источнику питания электромагнита 16 открывается управляемый им вакуумный клапан 15, в результате чего вакуумный ресивер соединяется с полостью 19 сервокамеры 20. Если же клапан 15 закрыт, то связь между вакуумным ресивером и полостью 19 сервокамеры прерывается. В случае подключения к источнику питания электромагнита 18 открывается приводимый им воздушный клапан 17, что приводит к соединению полости 19 сервокамеры с атмосферой. При закрытом клапане 17 эта связь прерывается.
Таким образом, при открытии клапана 15 увеличивается разрежение в полости 19 сервокамеры, а при открытии клапана 17, наоборот, уменьшается. Когда оба клапана закрыты, разрежение в полости 19 остается неизменным.
Рис. 66. Структурная схема микропроцессорной системы управления сцеплением
В зависимости от разрежения в полости 19. сервокамеры меняется положение ее штока 21, и соответственно регулируется момент Мс, передаваемый сцеплением. Из рассмотрения зависимости Мс от перемещения L рычага привода сцепления (рис. 65) следует, что момент Мс
изменяется от нуля до значения Мс тах при перемещении рычага на 13 мм (полный ход рычага составляет 46 мм). Это учитывается алгоритмом системы управления.
Работой клапанов 15 и 17 (см. рис. 64) управляет микропроцессорный электронный блок 11 управления, который вырабатывает необходимые команды для включения и выключения электромагнитов 16 и 18 в зависимости от сигналов, получаемых от датчиков частоты вращения 6, 2 и 24 соответственно коленчатого вала, ведомого элемента сцепления, ведомого вала коробки передачи и датчика 8 положения дроссельной заслонки карбюратора. Команду на принудительное выключение сцепления в процессе переключения передач микропроцессорное устройство вырабатывает при поступлении к нему сигнала от выключателя 10, контакты которого замыкаются, когда водитель прикладывает усилие к рычагу переключения передач.
Обработка информации, получаемой от всех элементов системы управления, выполняется центральным микропроцессором ЦПУ типа 8085 с тактовой частотой 2,2 МГц (рис. 66). Он связан с программируемым постоянным запоминающим устройством ППЗУ с объемом памяти 2 кбайт и оперативным запоминающим; устройством ОЗУ с объемом памяти 256 байт.
В ППЗУ записывается программа алгоритма, контакты, стандартные программы и т. д. ОЗУ используется для записи результатов промежуточных вычислений, текущих значений измеренных величин и других данных, требуемых для функционирования микропроцессорной системы.
Работа системы в реальном масштабе времени, требуемая для выдачи в определенное время команд управления и организации временных задержек, реализуется таймером. Связь между управляющими элементами системы и силовыми исполнительными устройствами (электромагнитами клапанов) осуществляется через так называемые порты ввода-вывода и усилительные каскады. ОЗУ, порты ввода-вывода и таймер выполнены в виде одной большой интегральной схемы (БИС) типа 8156.
Микропроцессоры могут обрабатывать сигналы только в виде двоичного цифрового кода. В связи с этим сигналы от датчиков частоты вращения пк коленчатого вала, частоты вращения пс ведомого вала сцепления и частоты вращения nп ведомого вала . коробки передач, имеющие вид последовательности импульсов, вначале с помощью ПЧН преобразуются в аналоговый сигнал (напряжения постоянного тока соответственно UK, Uc, Ua), а затем с помощью АЦП преобразуются в двоичный код. Также с помощью АЦП осуществляется преобразование аналогового сигнала датчика положения дроссельной заслонки (потенциометра) в цифровой двоичный код. Работой АЦП и ППЗУ управляют ключевые элементы, входящие в микросхему типа 8212.
Для исключения нечеткой работы системы управления в режиме принудительного выключения сцепления, возможной при «дребезге» контактов выключателя ВС сцепления, используется устройство с элементом задержки разрыва цепи ЭЗ.
Основной задачей системы управления является регулирование по заданному закону момента Мс в зависимости от угла открытия дроссельной заслонки, частоты вращения коленчатого вала, его ускорения .(замедления) и включения в коробке передач той или иной передачи.
Рис. 68. Зависимости M=f(nК) и Mc=f(nK) для различных а при микропроцессорной системе управления сцеплением
В зависимости от угла открытия дроссельной заслонки микропроцессор рассчитывает «целевую» частоту вращения пц, которая тем выше, чем на больший угол а открыта дроссельная заслонка (рис. 67). Система управления непрерывно сравнивает значение nЦ с текущей частотой вращения nKi коленчатого вала и определяет знак разности nKi — nц. Если пц>пкi, то система управления уменьшает момент Мс для того, чтобы снизить нагрузку на двигатель и увеличить частоту вращения пк. Наоборот, при пц<пкi значение Мс увеличивается и частота вращения пк снижается.
Таким образом, в рассматриваемой системе управления параметром обратной связи для системы регулирования момента Мс является разность между истинной и целевой частотами вращения, причем последняя является функцией угла открытия дроссельной заслонки.
Особенность действия системы управления заключается в том, что при постоянстве угла открытия дроссельной заслонки процесс разгона автомобиля в период до окончания пробуксовывания сцепления будет протекать при постоянстве частоты вращения коленчатого вала, которая окажется равной значению пц для данного угла открытия заслонки. Величины моментов Мс в указанные периоды (рис. 68, точки А, В, С и D) будут равны крутящим моментам двигателя М, развиваемым при данных значениях угла а и пц.
Рис. 69. Изменение при разгоне автомобиля угла а, частот вращения пк, nц и nс, момента Мс я силы тока I16 и I18 в обмотках электромагнитов управления воздушным и вакуумным клапанами при микропроцессорной системе управления
Момент Мс
возрастает по мере увеличения пк, т. е. в конечном итоге рассматриваемая система управления обеспечивает получение именно такой зависимости Mс=f(nк), которая является оптимальной для автоматизации действия сцепления. После окончания пробуксовывания сцепления, определяемого системой управления путем сравнения сигналов от датчиков 2 и 6 (см. рис. 64), поступает команда на блокировку сцепления при t=tбл
(рис. 69). Благодаря этому уменьшается износ узлов привода сцепления и, в первую очередь, его выжимного подшипника.
Ввиду неизбежного запаздывания в срабатывании исполнительных механизмов по отношению к изменению частоты вращения коленчатого вала для получения качественного процесса регулирования момента Мс необходимо исключить режимы работы двигателя без нагрузки, поскольку это приведет к чрезмерно высокому темпу изменения частоты вращения его вала.
Для удовлетворения данного требования в системе управления предусмотрено частичное включение сцепления, как только водитель откроет дроссельную заслонку на небольшой угол. Это достигается путем принудительного кратковременного открытия клапана 17 (см. рис. 64) на 0,15 с несмотря на то, что в данный период nк<nц. В результате последующее увеличение пк будет происходить при наличии нагрузки на двигателе, создаваемой частично включенным сцеплением.
Для плавного изменения момента Мс при его регулировании, осуществляемом открытием и закрытием клапанов 15 и 17, должны быть исключены значительные колебания разрежения в полости 19 сервокамеры 20. В рассматриваемой системе управления это достигается вследствие непрерывно повторяющегося открытия и закрытия на короткие периоды данных клапанов. При этом увеличение момента Мс реализуется за счет того, что общая продолжительность открытого состояния клапана 17 оказывается больше общей продолжительности открытого состояния клапана 15. Если же необходимо уменьшить момент Мс, то это обеспечивается вследствие увеличения общей продолжительности открытого состояния клапана 15 (по сравнению с клапаном 17). После того как значение Мс
устанавливается на заданном уровне, оба клапана закрываются.
Если во время разгона автомобиля водитель постепенно увеличивает открытие дроссельной заслонки, то это приводит к повышению «ц, вследствие чего и частота вращения пк
при разгоне автомобиля также возрастает.
При этом для повышения момента Мс система управления по мере повышения частоты вращения пк увеличивает общее время открытого состояния воздушного клапана 17, через который полость 19 сервокамеры соединяется с атмосферой. Работа клапанов корректируется также в зависимости от значения ускорений (замедлений) коленчатого вала и ведущего вала коробки передач. По мере увеличения пк возрастает продолжительность импульсов тока I18 (см. рис. 69), проходящего через обмотку электромагнита 18 (см. рис. 64), и уменьшается продолжительность импульсов тока I16, проходящего через обмотку электромагнита 17. В результате относительная продолжительность открытого состояния воздушного клапана возрастает, а вакуумного клапана 15 — снижается, что и обеспечивает требуемое увеличение Мс при повышении пк.
В результате поступления в процессор информации от датчиков частоты вращения ведущего и ведомого валов коробки передач система управления определяет, какая из передач включена в каждый момент времени. Благодаря этому можно реализовать различный темп включения сцепления после окончания процесса переключения передач в зависимости от порядка их переключения. Данная особенность системы управления позволяет после перехода с высших на низшие передачи уменьшить темп включения сцепления, что обеспечивает плавность движения автомобиля в процессе переключения передач.
Результаты испытаний рассмотренной системы управления показали возможность применения микропроцессорных систем для автоматизации управления сцеплением.
МИКРОПРОЦЕССОРНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ
Электронные системы управления, создаваемые на базе дискретных элементов и интегральных микросхем, выполняющих какую-либо определенную задачу управления, относятся к системам с жесткой логикой, т. е. алгоритм их функционирования определяется схемотехникой системы. У микропроцессорных систем такое ограничение отсутствует, т. е. при одной и той же структуре данные системы могут реализовывать различные алгоритмы управления вследствие соответствующего изменения записи команд в элементах памяти системы. Благодаря этому микропроцессорные системы образуют особый класс электронных систем управления и обладают рядом уникальных возможностей с точки зрения реализации самых сложных задач управления [2, 19, 20, 36).
В микропроцессорной системе обработка информации ведется в двоичном цифровом коде. Поэтому все многообразие поступающих в систему сигналов должно быть сведено к единой двоичной кодовой структуре, т. е. структуре вида «логический О» или «логическая 1». Сигналы, поступающие в систему управления, можно условно разделить на следующие группы:
сигналы от контактных или других датчиков, имеющие только два возможных состояния — открыт («логическая 1») и закрыт («логический О»);
сигналы от терминального устройства, т. е. от элементов системы, на которые воздействует водитель для корректирования действия системы управления (например, датчик положения педали управления подачей топлива либо контроллер управления). К этой группе могут быть отнесены и различные запросы на индикацию состояния тех или иных элементов системы управления;
информация о режимах работы агрегатов автомобиля (температура узлов, их нагрузочный режим, напряжение бортовой сети, частоты вращения валов двигателя и трансмиссии и др.).
Преобразование различных сигналов в требуемый их вид (цифровой код) для последующей обработки центральным процессором (ЦПУ) выполняют предварительные устройства, к которым можно отнести аналого-цифровые (АЦП) и цифроаналоговые (ЦАП) преобразователи, преобразователи частоты в напряжение (ПЧН). АЦП применяют для преобразования непрерывного линейного сигнала датчиков температуры, давления, напряжения в цифровой код, а ЦАП — для обратного преобразования. Преобразование частот вращения валов в код может происходить как через промежуточный ПЧН с последующим преобразованием напряжения в код, гак и путем непосредственного преобразования частоты в код. Для контактных датчиков преобразования не требуется, так как их выходной сигнал имеет уровень, соответствующий или состоянию «логического О», или «логической 1». Сигналы терминального устройства уже, как правило, имеют необходимую для обработки процессором структуру и поэтому дальнейшего преобразования не требуют.
Все сигналы от внешних источников, преобразованные к единому виду, поступают на интерфейс ввода-вывода, который может входить в состав микросхемы процессора или выполняться в виде отдельных элементов. Устройство ввода-вывода обеспечивает совместную работу ЦПУ и всех других устройств системы, являющихся по отношению к ЦПУ внешними.
Работа с внешними устройствами выполняется либо по методу периодического опроса их состояния, либо посредством организации системы прерываний от них. При работе микропроцессора с реализацией системы прерываний в нем осуществляется следующий порядок действий:
1) в момент, когда одно из внешних устройств готово выдать или принять очередную информацию или оказать воздействие на функционирование системы управления, оно посылает в ЦПУ сигнал готовности (запрос на прерывание);
2) получив сигнал готовности от внешнего устройства, ЦПУ вначале заканчивает выполнение текущей команды, а затем приостанавливает выполнение действий, предусмотренных основной программой, и выдает сигнал готовности начать работу, связанную с возникшим прерыванием (разрешение прерывания);
3) при наличии обоих указанных сигналов готовности происходит обработка прерывания, т. е. выполнение подпрограммы, предусмотренной запросом данного внешнего устройства;
4) если во время решения ЦПУ текущей задачи сигнал готовности прислали несколько внешних устройств, то первой будет принята для обработки или выдана информация внешнему устройству со старшим приоритетом. Уровень приоритетности внешних устройств задается либо при проектировании системы, либо закладывается в программу.
Далее обрабатывается информация внешних устройств с очередностью, определяемой старшинством их приоритета. Число градаций старшинства приоритетов (так называемая глубина прерываний) зависит от типа микропроцессора. Она колеблется от 2 до 8 и более.
Для обеспечения работы микропроцессорной системы управления в реальном масштабе времени, т. е. с выдачей необходимых команд в определенные периоды времени, в ее состав вводят таймер, который обычно выполняют в виде отдельной интегральной микросхемы. Получив управляющую команду (управляющее слово), таймер формирует определенную последовательность временных сигналов. К числу таких, например, относится деление тактовой частоты, формирование единичных импульсов (режим одновибратора), а также различных комбинаций импульсов. Сигналы от таймера наряду с сигналами от других внешних устройств поступают в ЦПУ, где в соответствии с заложенными алгоритмами происходят все необходимые преобразования и вычисления и выдается решение. Таким решением может быть, например, номер включаемой передачи, требование выключения сцепления, степень открытия дроссельной заслонки.
Для работы ЦПУ постоянно требуются дополнительные сведения, различные константы, а также необходимо временное хранение промежуточной информации. Эти данные ЦПУ получает от запоминающих устройств (ЗУ) системы. Для приема, хранения и выдачи всевозможных промежуточных данных, а также сведений о текущем состоянии элементов, т. е. всей той информации, которая изменяется в процессе работы микропроцессорной системы управления, используется оперативное запоминающее устройство (ОЗУ).
Для хранения информации, которая не изменяется при работе микропроцессора, а также записи алгоритма функционирования системы применяются постоянные запоминающие устройства (ПЗУ) различного типа. Наиболее низкую стоимость имеют ПЗУ (ROM), программа в которые записывается при их изготовлении. Такие устройства применяются при массовом изготовлении микропроцессорных систем.
В программируемые запоминающие устройства ППЗУ (PROM) запись программы может быть осуществлена и после их изготовления на заводе. Поэтому данные устройства целесообразно применять при изготовлении относительно небольших серий микропроцессорных систем управления, особенно если в процессе их выпуска может возникнуть необходимость корректирования алгоритма управления.
В репрограммируемые запоминающие устройства РПЗУ (EPROM) программа может быть записана несколько раз. Однако эти устройства имеют более высокую стоимость, чем ПЗУ и ППЗУ. Поэтому РПЗУ в основном целесообразно применять только на стадии отладочных работ по микропроцессорным системам.
Для связи между выходами микропроцессора и исполнительными устройствами системы управления используются усилители сигналов или коммутационные элементы (силовые цепи).
Микропроцессорные системы отличаются большим разнообразием с точки зрения примененных типов устройств и их характеристик. Так, разрядность слова, т. е. число одновременно обрабатываемых разрядов, составляет 4 — 16 бит, тактовая частота — от одного до нескольких мегагерц, число уровней прерывания 2 — 8, объем ОЗУ — от 128 байт до нескольких килобайт, объем ПЗУ и ППЗУ — несколько килобайт. Например, объем ПЗУ системы управления двигателем и трансмиссией «Тойота» составляет 7,5 кбайт, объем ППЗУ системы управления сцеплением «Фиат» — 2 кбайт. В качестве ЦПУ могут использоваться как специальные микропроцессоры (например, в системе «Тойота»), так и серийные [37, 40, 41].
Особо перспективным является применение в системах управ ления агрегатами автомобилей однокристальных ЭВМ. В состав такой ЭВМ, выполненной в виде одной интегральной схемы, входят центральный процессор, генератор тактовых импульсов, ОЗУ, интерфейс ввода-вывода, таймер, контроллер прерываний, а также какое-либо из постоянных запоминающих устройств (ПЗУ, ППЗУ или РПЗУ с ультрафиолетовой системой стирания программы). Часто в составе одной серии однокристальных ЭВМ выпускают модификации с различными вариантами ПЗУ. Основным преимуществом применения однокристальной ЭВМ является возможность значительного сокращения числа интегральных микросхем, образующих систему управления. Однокристальная ЭВМ в зависимости от структуры микропроцессорной системы управления может заменить 5 — 10 корпусов интегральных микросхем, что помимо уменьшения размеров аппаратуры управления обеспечивает и существенное повышение ее надежности в результате сокращения внешних соединений между корпусами микросхем.
Рис. 4. Структурная схема микропроцессорной системы автоматического управления переключением передач (на базе комплекта микросхем серии КР580)
На рис. 4 приведена структурная схема системы автоматического управления переключением передач, основанная на применении микросхем, входящих в состав микропроцессорного комплекта серии КР580 [3, 5]. На вход системы подаются сигналы от датчиков скорости автомобиля и частоты вращения коленчатого вала двигателя, температуры двигателя, загрузки автомобиля и др., а также команды, поступающие от аппаратуры управления, на которые воздействует водитель (например, датчик положения педали управления подачей топлива, контроллер управления, запросы на индикацию состояния тех или иных устройств управления или показателей двигателя и коробки передач).
Перед поступлением в собственно микропроцессорную систему управления все эти сигналы обязательно преобразуются в числовой код с помощью соответствующих преобразователей (например, аналого-цифровых преобразователей, преобразователей частота — код и т. д.), входящих в состав блока ввода. Информация от блока ввода поступает в схему интерфейса. Причем в случае большого объема информации таких схем интерфейса может быть несколько.
ЦПУ рассматриваемой микропроцессорной системы состоит из трех микросхем. Большая интегральная схема микропроцессора типа КР580ИК80А обрабатывает всю информацию. Ее связь с шинами управления и данных осуществляется через системный.контроллер — шинный формирователь, а формирование тактовых последовательностей импульсов, необходимых для работы БИС микропроцессора, происходит с помощью генератора, стабилизированного кварцевым резонатором. В зависимости от вырабатываемых ЦПУ сигнала на шине управления и кода на шине адреса в работу с ним включается то или иное устройство микропроцессорной системы. Например, когда ЦПУ выдает на шину адреса код, требуемый для активизации соответствующего канала интерфейса, а на шину управления подает сигнал ввода, информация от данного канала интерфейса поступает в ЦПУ для последующей обработки.
В случае необходимости аналогичным образом осуществляется подача команд на обмен информации между ЦПУ и другими элементами микропроцессорной системы. При этом для работы с запоминающими устройствами ЦПУ выдает на адресную шину адрес ячейки памяти, а на шину управления команду «чтение» или «запись».
Для функционирования системы автоматического управления переключением передачи необходимо предусмотреть быстрое изменение режимов работы системы в зависимости от некоторых факторов. К числу таких факторов можно, например, отнести отказы тех или иных датчиков, приводящие к созданию аварийной ситуации, наличие юза при торможении автомобиля, непредусмотренные изменения напряжения питания системы.
Для того чтобы микропроцессорная система оперативно реагировала на указанные отклонения от нормальной работы, в ней используется система прерываний, реализуемая с помощью контроллера прерываний. К каждому входу или к части входов контроллера прерываний подводятся сигналы от внешних устройств. При появлении на каком-либо из входов контроллера сигнала с уровнем, соответствующим состоянию «логической 1», он посылает по линии запроса в ЦПУ запрос на прерывание его работы по основной программе. В зависимости от того, на какой из входов контроллера поступает сигнал с уровнем, соответствующим «логической 1», контроллер подготавливает информацию ЦПУ о том, на какую из подпрограмм ему следует перейти. Если сигналы с уровнем, соответствующим «логической 1», будут поданы одновременно на несколько входов контроллера, то он подготавливает для ЦПУ информацию о переходе на подпрограмму, предусмотренную сигналом внешнего устройства с самым старшим приоритетом.
При поступлении запроса от контроллера на прерывание ЦПУ сначала заканчивает выполнение текущей команды, а затем выдает на управляющую шину сигнал разрешения прерывания, т. е. готовность перехода от основной программы к подпрограмме. После этого контроллер информирует ЦПУ, на какую из подпрограмм ему следует перейти. По окончании выполнения этой подпрограммы ЦПУ либо по сигналу контроллера прерывания переходит на новую подпрограмму, запрос на которую поступил к контроллеру от следующего по старшинству приоритета внешнего устройства, либо при отсутствии таких запросов возвращается к выполнению основной программы.
Выполнение ЦПУ подпрограмм в порядке, определяемом старшинством приоритета внешних устройств, обеспечивает первоочередную реализацию в системе управления переключением передач таких управляющих воздействий, которые являются наиболее важными для автомобиля. В частности, старшим приоритетом, как правило, обладают внешние устройства, сигнализирующие о неполадках в системе управления, могущих создать для автомобиля аварийную ситуацию.
Микросхема контроллера прерываний КР580ВН59 имеет восемь входов для подключения к внешним устройствам. К одному или нескольким из этих входов могут быть подключены выходы таймера. Если при этом к входам таймера подвести сигналы от датчиков скорости и частоты вращения, то такое схемное решение позволит исключить из состава системы управления частотно-аналоговые и аналого-цифровые преобразователи, поскольку выполняемые ими задачи могут быть решены совместным действием таймера и ЦПУ.
Таймер может быть также использован для создания программ микропроцессорных систем управления, устойчивых к сбоям под воздействием внешних помех. В этом случае таймер используется для периодического контроля состояния элементов микропроцессорных систем управления, которое зависит от того, правильно ли функционирует система или в ней имеют место сбои.
После того, как ЦПУ заканчивает обработку соответствующего объема информации, он выдает управляющую команду, которая далее через канал вывода интерфейса поступает к блоку усилителей питания электромагнитов исполнительных устройств, а также к блоку индикации режимов. В результате обеспечивается требуемый порядок срабатывания исполнительных устройств и получение индикации режимов их работы.
Если для управления переключением передач применить однокристальную ЭВМ, то по своим функциональным возможностям она будет эквивалентна микросхеме, очерченной на рис. 4 штрих-пунктирной линией. В этом случае микропроцессорная система существенно упрощается. По техническим возможностям она практически не уступает системам, создаваемым с использованием нескольких микросхем, входящих в микропроцессорный комплект. В частности, если объем памяти однокристальной ЭВМ окажется недостаточным, то его можно увеличить, подключив ЭВМ к внешним устройствам.
Однокристальная ЭВМ содержит сотни тысяч элементов, и технология ее изготовления значительно сложнее по сравнению с изготовлением микросхем, входящих в микропроцессорный комплект. Вследствие этого стоимость однокристальной ЭВМ достаточно высока. Поэтому вопрос о целесообразности создания микропроцессорных систем управления на базе однокристальной ЭВМ следует решать с учетом конкретных областей применения той или иной системы управления.
По сравнению с электронными системами управления микропроцессорные системы имеют следующие преимущества:
с их помощью возможна реализация алгоритма управления любой сложности. При этом может быть учтено большое количество внешних параметров (помимо традиционно принимаемых во внимание частот вращения вала двигателя, выходного вала трансмиссии и нагрузки двигателя) таких, например, как производные этих параметров по времени, температурный режим двигателя, температура масла, полная масса автомобиля и т. д. Возникающие при этом трудности связаны лишь с необходимостью введения дополнительных датчиков и преобразователей;
при необходимости обеспечивается корректирование алгоритма управления как при развитии системы, так и в рамках существующей системы с учетом, например, таких факторов, как изменение характеристик агрегатов вследствие их изнашивания. Следовательно, возможно создание адаптивных систем управления, которые способны изменять свои характеристики в процессе эксплуатации автомобиля с целью обеспечения его наилучших показателей. Для достижения такого эффекта не требуется изменения аппаратурной части системы;
вследствие реализации широких возможностей микропроцессор ных систем возможно создание комплексной системы управления агрегатами автомобиля (например, двигателем, сцеплением, коробкой передач);
система управления на базе микропроцессорного комплекта или однокристальной ЭВМ требует минимального объема настройки и регулировок, поскольку они необходимы только для таких вспомогательных элементов системы, как ПЧН, ЦАП и АЦП.
Основными недостатками микропроцессорных систем являются:
относительно высокая стоимость системы вследствие необходимости ее комплектования рядом вспомогательных элементов, из числа которых наиболее дорогостоящими являются устройства ввода-вывода информации. Кроме того, значительная часть расходов по созданию микропроцессорных систем управления приходится на разработку их математического обеспечения;
чувствительность к помехам, которые могут вызывать сбои в работе системы. Это особенно важно для автомобильных микропроцессорных систем управления, поскольку работа агрегатов автомобиля сопровождается значительными помехами в его бортовой сети, а также полевыми (электромагнитными) помехами. Для устранения этого недостатка в настоящее время большое внимание уделяется разработке помехоустойчивых алгоритмов, т. е. таких, которые способны восстанавливать свою работу после непредвиденных сбоев [2].
Непрерывное совершенствование технологии производства электронных приборов, в том числе элементов микропроцессорных систем управления, обусловливает снижение их стоимости и создает благоприятные предпосылки для расширения их применения. Однако микропроцессорные системы целесообразно использовать в первую очередь для систем управления агрегатами автомобиля со сложными алгоритмами. К таким системам следует отнести антиблокировочные системы управления тормозными механизмами, системы управления гидромеханическими и автоматизированными механическими передачами и, конечно, комплексные системы управления несколькими агрегатами.
Одной из основных проблем создания микропроцессорных систем является разработка и реализация оптимального алгоритма управления. Многие различные микропроцессорные системы отличаются одна от другой в основном составом датчиков и видом алгоритма функционирования, который зависит от целевого назначения системы и сложности решаемых ею задач.
ОСНОВНЫЕ ПРЕДПОСЫЛКИ ПРИМЕНЕНИЯ ЭЛЕКТРОННЫХ СИСТЕМ
Для автоматизации управления сцеплением разрабатывались различные системы. Наиболее перспективными из них являются системы, базирующиеся на использовании стандартного (штатного) фрикционного сцепления автомобиля. Автоматическое управление таким сцеплением возможно, даже если сохранить без изменения серийный силовой агрегат, что экономически наиболее целесообразно.
Для получения заданной функциональной связи между моментом Л1С и частотой вращения пк необходимо на вход системы управления подавать сигнал, зависящий от пк. Выходной сигнал системы управления может быть различным в зависимости от того, на какую управляющую аппаратуру он должен воздействовать. Так, например, если для регулирования момента Мс
используется гидроавтоматика, то выходным сигналом системы управления должно быть давление жидкости, а необходимая функциональная связь между Мс
и пк может быть в принципе обеспечена путем включения в состав системы управления гидронасоса или центробежного регулятора давления с приводом от коленчатого вала. Если же для регулирования момента Мс
используется силовой пневмопривод, то в системе управления должен быть предусмотрен регулятор давления воздуха, приводимый, например, от коленчатого вала.
При использовании для автоматизации управления сцеплением электромагнитных или электромеханических устройств в состав системы управления должен входить преобразователь, выходное напряжение или выходной ток которого являются функцией частоты вращения коленчатого вала двигателя.
Для обеспечения принудительного выключения сцепления в процессе переключения передач независимо от частоты вращения коленчатого вала во всех известных системах автоматического управления сцеплением используется выключатель, встроенный в рычаг переключения передач. Когда водитель, переключая передачи, прикладывает усилие к рычагу переключения, контакты данного, выключателя замыкаются. При этом к источнику питания (бортовой сети автомобиля) подключается электромагнит системы управления, вследствие чего к исполнительному устройству привода сцепления поступает команда на выключение сцепления. Таким образом, в случае гидро- и пневмоавтоматики в составе системы автоматического управления сцеплением необходимо иметь как соответствующий регулятор давления с приводом от коленчатого вала двигателя, так и электромагнит принудительного выключения сцепления. Если же применяется система электроавтоматики, то нет необходимости в центробежном регуляторе давления, так как электромагнит принудительного выключения сцепления может быть одновременно использован и в качестве регулятора давления при условии его подключения к блоку автоматики, в состав которого входит преобразователь частоты входного сигнала в напряжение (ПЧН) или в силу тока (ПЧТ).
В большинстве систем автоматизации управления сцеплением используют исполнительные механизмы с пневмо- или гидроприводом. Для управления этими приводами до последнего времени преимущественно применялись различные виды центробежных регуляторов, воздействующих на клапанные устройства. Недостатком применения таких регуляторов (или гидронасосов) является необходимость их привода от коленчатого вала двигателя, что часто затруднительно, а иногда и даже невозможно из-за ограниченности места в моторном отделении двигателя. Кроме того, при использовании регуляторов давления такого типа не обеспечивается получение оптимальных зависимостей Mc=f(fiK) и, в том числе, различный характер их протекания на режимах разгона и замедления коленчатого вала.
Задачи реализации требуемых законов управления решаются относительно просто при использовании электрических и в особенности электронных систем управления для регулирования давления в исполнительных механизмах привода сцепления. Наиболее сложными в системе автоматического управления сцеплением являются те ее элементы, которые обеспечивают получение требуемой зависимости Mc=f(nK). Поэтому целесообразность применения электронной системы управления сцеплением в первую очередь зависит от возможности создания надежной электронной аппаратуры, осуществляющей преобразование входного сигнала (зависящего от частоты вращения коленчатого вала) в силу тока, поступающего в обмотку электромагнита управления исполнительными механизмами привода сцепления.
При выборе типа системы управления следует сопоставить технико-экономические показатели аппаратуры, основанные как на использовании только электронных устройств, так и элементов релейной автоматики в сочетании с электронными комплектующими изделиями. Следует иметь в виду, что вместо одного электромагнитного реле, как правило, приходится использовать электронное устройство, содержащее от 10 до 20 полупроводниковых и других комплектующих изделий. Поэтому экономические преимущества применения чисто электронной системы управления обычно обеспечиваются только при условии ее создания на базе оптимальных схемотехнических решений. Одним из условий реализации таких решений является рациональное использование в электронной аппаратуре интегральных микросхем массового производства.
Электронная система управления при унифицированном ее исполнении может применяться в автомобилях с различными требуемыми законами изменения Mc=f(nK). В этом случае достаточно только изменить настройку электронной аппаратуры, исходя из условия обеспечения оптимальных условий совместной работы двигателя и сцепления на данной модели автомобиля. Вследствие унификации электронной системы уменьшается ее стоимость.